Tag Archives: Steganalysis

Eigenvalues-based LSB steganalysis

Abstract:
So far, various components of image characteristics have been used for steganalysis, including the histogram characteristic function, adjacent colors distribution, and sample pair analysis. However, some certain steganography methods have been proposed that can thwart some analysis approaches through managing the embedding patterns. In this regard, the present paper is intended to introduce a new analytical method for detecting stego images, which is robust against some of the embedding patterns designed specifically to foil steganalysis attempts. The proposed approach is based on the analysis of the eigenvalues of the cover correlation matrix used for the purpose of the study. Image cloud partitioning, vertical correlation function computation, constellation of the correlated data, and eigenvalues examination are the major challenging stages of this analysis method. The proposed method uses the LSB plane of images in spatial domain, extendable to transform domain, to detect low embedding rates-a major concern in the area of the LSB steganography. The simulation results based on deviation detection and rate estimation methods indicated that the proposed approach outperforms some well-known LSB steganalysis methods, specifically at low embedding rates.

Eigenvalues-based LSB steganalysis

Multi-dimensional correlation steganalysis

Abstract:
Multi-dimensional spatial analysis of image pixels have not been much investigated for the steganalysis of the LSB Steganographic methods. Pixel distribution based steganalysis methods could be thwarted by intelligently compensating statistical characteristics of image pixels, as reported in several papers. Simple LSB replacement methods have been improved by introducing smarter LSB embedding approaches, e.g. LSB matching and LSB+ methods, but they are basically the same in the sense of the LSB alteration. A new analytical method to detect LSB stego images is proposed in this paper. Our approach is based on the relative locations of image pixels that are essentially changed in an LSB embedding system. Furthermore, we introduce some new statistical features including “local entropies sum” and “clouds min sum” to achieve a higher performance. Simulation results show that our proposed approach outperforms some well-known LSB steganalysis methods, in terms of detection accuracy and the embedding rate estimation.

Multi-dimensional correlation steganalysis