Publications

A many-channel FPGA control system,” Daniel T. Schussheim and Kurt Gibble, Rev Sci Instrum 94, 085101 (2023). doi.org/10.1063/5.0157330

Isotope Shifts in Cadmium as a Sensitive Probe for Physics Beyond the Standard Model,” B. Ohayon, S. Hofsäss, J.E. Padilla-Castillo, S. C. Wright, G. Meijer, S. Truppe, K. Gibble, B. K. Sahoo, New Journal of Physics 24, 123040 (2022). doi.org/10.1088/1367-2630/acacbb

Cold atoms in space: community workshop summary and proposed road-map,” Alonso et al., EPJ Quantum Technology 9, 30 (2022). doi.org/10.1140/epjqt/s40507-022-00147-w

Fundamental physics with a state-of-the-art optical clock in space,” Andrei Derevianko, Kurt Gibble, Leo Hollberg, Nathan Newbury, Christopher Oates, Marianna Safronova, Laura Sinclair, and Nan Yu, Quantum Science and Technology, 7, 044002 (2022). doi.org/10.1088/2058-9565/ac7df9

Measuring atom positions in a microwave cavity to evaluate distributed cavity phase shifts,” Kathryn Burrows, R. J. Hendricks, Krzysztof Szymaniec, Kurt Gibble, Scott Beattie and Bin Jian, Metrologia 57, 065003 (2020). doi.org/10.1088/1681-7575/ab9ad4

Qualification and Frequency Accuracy of the Space-based Primary Frequency Standard PHARAO,” Philippe Laurent, Francois Xavier Esnault, Kurt Gibble, Phil Peterman, Thomas Lévèque, Christophe Delaroche, Olivier Grosjean, Igor Moric, Michel Abgrall, Didier Massonnet and Christophe Salomon, Metrologia 57, 055005 (2020). doi.org/10.1088/1681-7575/ab948b

First Accuracy Evaluation of the NRC-FCs2 Primary Frequency Standard,” Scott Beattie, Bin Jian, John Alcock, Marina Gertsvolf, Rich Hendricks, Krzysztof Szymaniec and Kurt Gibble, Metrologia 57, 035010 (2020). doi.org/10.1088/1681-7575/ab7c54

Narrow-line Cooling and Determination of the Magic Wavelength of Cd,”  Atsushi Yamaguchi, Marianna S. Safronova, Kurt Gibble, and Hidetoshi Katori, Phys. Rev. Lett. 123, 113201 (2019). doi.org/10.1103/PhysRevLett.123.113201

Cs Fountain Clocks for Commercial Realisations — an Improved and Robust Design,” Richard J. Hendricks, Filip Ozimek, Krzysztof Szymaniec, Bartłomiej Nagorny, Piotr Dunst, Jerzy Nawrocki, Scott Beattie, Bin Jian and Kurt Gibble, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 66, 624-631 (2018).  doi.org/10.1109/TUFFC.2018.2874550

Advances in the accuracy, stability, and reliability of the PTB primary fountain clocks,” Stefan Weyers, Vladislav Gerginov, Michael Kazda, Johannes Martin Rahm, Burghard Lipphardt, Georgi Dobrev and Kurt Gibble, Metrologia 55, 789–805 (2018). doi.org/10.1088/1681-7575/aae008
Selected for Metrologia Highlights of 2018.

Atomic Clock Measurements of Quantum Scattering Phase Shifts Spanning Feshbach Resonances at Ultralow Fields,” Aaron Bennett, Kurt Gibble, Servaas Kokkelmans, Jeremy M. Hutson, Phys. Rev. Lett. 119, 113401 (2017).

Systematic Effects in Atomic Fountain Clocks,” K. Gibble, 8th Symposium on Frequency Standards and Metrology 2015, Journal of Physics: Conference Series 723 , 012002 (2016).

NPL Cs fountain frequency standards and the quest for the ultimate accuracy,” K Szymaniec, S N Lea, K Gibble, S E Park, K Liu and P Głowacki, 8th Symposium on Frequency Standards and Metrology 2015, Journal of Physics: Conference Series 723 , 012003 (2016).

Microwave lensing frequency shift of the PHARAO laser-cooled microgravity atomic clock,” P. Peterman, K. Gibble, Ph. Laurent and Ch. Salomon, Metrologia 53, 899-907 (2016).

Towards a Mg Lattice Clock: Observation of the 1S03P0 Transition and Determination of the Magic Wavelength,” A. P. Kulosa, D. Fim, K. H. Zipfel, S. Rühmann, S. Sauer, N. Jha, K. Gibble, W. Ertmer, E. M. Rasel, M. S. Safronova, U. I. Safronova, and S. G. Porsev, Phys. Rev. Lett. 115, 240801 (2015).

Reply to “Comment on ‘Ramsey spectroscopy, matter-wave interferometry, and the microwave-lensing frequency shift‘”,’ Kurt Gibble, Phys. Rev. A 91, 067602 (2015). See also “Comment on ‘Ramsey spectroscopy, matter-wave interferometry, and the microwave-lensing frequency shift’,” S. R. Jefferts, T. P. Heavner, S. Barlow, and N. Ashby, Phys. Rev. A 91, 067601 (2015).

Comment on ‘First accuracy evaluation of NIST-F2’,” Kurt Gibble, Metrologia 52, 163 (2015). The reference in the footnote is available here: NIST Response to FOIA Request 2014-001422. See also ‘Comment on “Frequency shifts in NIST Cs primary frequency standards due to transverse rf field gradients”,’ K. Gibble, arxiv.org/abs/1505.00691.

Ramsey spectroscopy, matter-wave interferometry, and the microwave-lensing frequency shift,” Kurt Gibble, Phys. Rev. A 90, 015601 (2014).

Scattering of Cold Atom Coherences by Hot Atoms: Frequency Shifts from Background Gas Collisions,” Kurt Gibble, Phys. Rev. Lett. 110, 180802 (2013).

s-Wave Collisional Frequency Shift of a Fermion Clock,” Eric L. Hazlett, Yi Zhang, Ronald W. Stites, Kurt Gibble, and Kenneth M. O’Hara, Phys. Rev. Lett. 110, 160801 (2013).

Direct Observation of Resonant Scattering Phase Shifts and their Energy Dependence,” Stephen D. Gensemer, Ross B. Martin-Wells, Aaron W. Bennett, and Kurt Gibble, Phys. Rev. Lett. 109, 263201 (2012).

Spin waves and Collisional Frequency Shifts of a Trapped-Atom Clock,” Wilfried Maineult, Christian Deutsch, Kurt Gibble, Jakob Reichel, and Peter Rosenbusch, Phys. Rev. Lett. 109, 020407 (2012).

Progress in Atomic Fountains at LNE-SYRTE,” (invited review) Jocelyne Guéna, Michel Abgrall, Daniele Rovera, Philippe Laurent, Baptiste Chupin, Michel Lours, Giorgio Santarelli, Peter Rosenbusch, Michael E. Tobar, Ruoxin Li, Kurt Gibble, André Clairon, and Sébastien Bize, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59, 391-410 (2012).

Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2,” Stefan Weyers, Vladislav Gerginov, Nils Nemitz, Ruoxin Li and Kurt Gibble, Metrologia 49, 82–87 (2012).

Comment on ‘Accurate rubidium atomic fountain frequency standard’,” Ruoxin Li and Kurt Gibble, Metrologia 48, 446-447 (2011).

Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts,” Ruoxin Li, Kurt Gibble and Krzysztof Szymaniec, Metrologia 48, 283-289 (2011). “The world’s most accurate timekeeper” BBC, Science Daily, Int. Business Times

Rydberg Spectroscopy in an Optical Lattice: Blackbody Thermometry for Atomic Clocks,” Vitali D. Ovsiannikov, Andrei Derevianko and Kurt Gibble, Phys. Rev. Lett. 107, 093003 (2011).

Evaluation of Doppler Shifts to Improve the Accuracy of Primary Atomic Fountain Clocks,” J. Guéna, R. Li, K. Gibble, S. Bize, and A. Clairon, Phys. Rev. Lett. 106, 130801 (2011).
APS Physics Synopsis – Time Doesn’t Stand Still.

Evaluating and Minimizing Distributed Cavity Phase Errors in Atomic Clocks,” R. Li and K. Gibble, Metrologia 47, 534-551 (2010).
Selected for Metrologia Highlights of 2010.

Keeping atoms synchronized for better timekeeping,” K. Gibble, Physics Viewpoint 3, 55 (2010).

Decoherence and Collisional Frequency Shifts of Trapped Bosons and Fermions,” K. Gibble, Phys. Rev. Lett. 103, 113202 (2009).

A quantum scattering interferometer,” R. A. Hart, X. Xu, R. Legere, & K. Gibble, Nature 446, 892-895 (2007).
See Science and Editor’s summary in Nature.

Difference between a Photon’s Momentum and an Atom’s Recoil,” K. Gibble, Phys. Rev. Lett. 97, 073002 (2006).
See Physics Review Focus and Laser Focus World .

Locking lasers with large FM noise to high-Q cavities,” L. Duan and K. Gibble, Optics Letters 30, 3317-3319 (2005).

Phase variations in microwave cavities for atomic clocks,” R. Li and K. Gibble, Metrologia 41, 376-386 (2004).

Experiments in Fundamental Physics Scheduled and in Development for the ISS,” C. Lammerzahl, G. Ahlers, N. Ashby, M. Barmatz, P. L. Biermann, H. Dittus, V. Dohm, R. Duncan, K. Gibble, J. Lipa, N. Lockerbie, N. Mulders, and C. Salomon, General Relativity and Gravitation 36, 615-649 (2004).

Measurement and Cancellation of the Cold Collision Shift in an 87Rb Fountain Clock,” C. Fertig and K. Gibble, Phys. Rev. Lett. 85, 1622-1625 (2000).
See Physics News Update and Science for some highlights.

Laser-Cooled 87Rb Clock,” C. Fertig and K. Gibble, IEEE Trans. Instr. Meas. 48, 520-523 (1999). (Demonstration of using the AC Zeeman shift to measure a cavity detuning.)

Quantum Scattering in a Juggling Atomic Fountain,” R. Legere and K. Gibble, Phys. Rev. Lett. 81, 5780 (1998).
Featured at PRFocus & in Physics World (Feb ’99, p. 5).

Prospects for Bose-Einstein Condensation of Cs,” S. J. J. M. F. Kokkelmans, B. J. Verhaar, and K. Gibble, Phys. Rev. Lett. 81, 951-954 (1998).

Prediction for Laser-Cooled Rb Clocks,” S. J. J. M. F. Kokkelmans, B. J. Verhaar, K. Gibble, and D. J. Heinzen, Phys. Rev. A. 56, 4389 (1997).

“Collisional Effects in Cold Alkalis,” K. Gibble, in Proceeding of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist Ed., (World Scientific, Singapore, p.66, 1996).

Direct Observation of s-wave Atomic Collisions,” Kurt Gibble, Seongsik Chang, Ronald Legere, Phys. Rev. Lett 75, 2666 (1995).

Eliminating Cold-Collision Frequency Shifts,” Kurt Gibble and Boudewijn J. Verhaar, Phys. Rev. A 52, 3370 (1995).

Cold-collision Properties Derived from Frequency Shifts in a Cesium Fountain,” Boudewijn J. Verhaar, Kurt Gibble, and Steven Chu, Phys. Rev. A 48, R3429 (1993).

Laser-Cooled Cs Frequency Standard and a Measurement of the Frequency Shift due to Ultracold Collisions,” Kurt Gibble and Steven Chu, Phys. Rev. Lett. 70, 1771 (1993).

Future Slow-atom Frequency Standards,” Kurt Gibble and Steven Chu, Metrologia 29, 201 (1992).

Improved Magneto-optic Trapping in a Vapor Cell,” Kurt E. Gibble, Steven Kasapi, and Steven Chu, Opt. Lett. 17, 526 (1992).

Interatomic potentials from velocity-changing collision kernels,” K. E. Gibble and J. Cooper, Phys. Rev. A 44, 5335 (1991).

Scattering angle resolution in measurements of velocity-changing collision kernels,” K. E. Gibble and J. Cooper, Phys. Rev. Lett. 67, 1936 (1991).

Measurements of velocity-changing collision kernels,” K. E. Gibble and A. Gallagher, Phys. Rev. A 43, 1366, (1991).

 

Selected Conference Papers

Fountain Clock Accuracy,” K. Gibble, Proc. 2012 European Frequency and Time Forum, 16 (2012), Gothenburg, Sweden. doi.org/10.1109/EFTF.2012.6502323

Frequency shifts of colliding fermions in optical lattice clocks,” K. Gibble, Proc. SPIE 8132, Time and Frequency Metrology III, 813209, SPIE Optical Engineering + Applications, 2011, San Diego, CA (2011).

Distributed cavity phase shifts and microwave photon recoils,” Fertig, C.; Ruoxin Li; Rees, J.I.; Gibble, K.; Proc. 2002 IEEE Freq. Contr. Symp., 29-31 May, 469 -472 (2002).

A juggling Rb fountain clock and a direct measurement of population differences,” Fertig, C.; Rees, J.I.; Gibble, K.; Proc. 2001 IEEE Freq. Contr. Symp., 6-8 June, 18 -21 (2001).

RACE: laser-cooled Rb microgravity clock,” Fertig, C.; Gibble, K.; Klipstein, B.; Maleki, L.; Seidel, D.; Thompson, R.; Proc. 2000 IEEE Freq. Contr. Symp., 7-9 June, 676 -679 (2000).

Laser-cooled Rb clock,” Fertig, C.; Bouttier, J.; Gibble, K.; Proc. 2000 IEEE Freq. Contr. Symp., 7-9 June, 680 -686 (2000).

Laser-cooled Rb fountain clocks,” Fertig, C.; Legere, R.; Suptitz, W.; Gibble, K.; Proc. Joint Meeting 1999 IEEE Freq. Contr. Symp. and European Freq. Time Forum, 13-16 April, 1, 39 -42 (1999).

Laser-cooled microgravity clocks,” Fertig, C.; Gibble, K.; Klipstein, B.; Kohel, J.; Maleki, L.; Seidel, D.; Thompson, R.; Proc. Joint Meeting 1999 IEEE Freq. Contr. Symp. and European Freq. Time Forum, 13-16 April, 1, 145 -147 (1999). Demonstrated using the AC Zeeman shift to measure the resonant frequency of a microwave cavity.

Laser-cooled microgravity clocks,” Gibble, K.; Proc. 1998 IEEE Freq. Contr. Symp., 27-29 May, 41 -45 (1998). doi.org/10.1109/FREQ.1998.717877

Laser-cooled Rb clocks,” Fertig, C.; Legere, R.; Suptitz, W.; Gibble, K.; Proc. 1998 IEEE Freq. Contr. Symp., 27-29 May, 18 -22 (1998).

Laser-cooled Rb clocks,” Fertig, C.; Legere, R.; Suptitz, W.; Gibble, K.; Proc. 1997 NASA/JPL Microgravity Fundamental Physics Workshop, May 7-9, 1997, NASA Document D-15677, 54-58, (1998). This paper shows a non-destructive test for a diode laser’s maximum output power.