Publications

GOOGLE SCHOLAR LINK here

Color code for publications is given below.  Some highlights in each area are accessed through the HIGHLIGHTS link or one of the links below.

Quantum Materials

Ferroelectrics, Piezoelectrics, and Multiferroics

Ultrafast & Nonlinear Optics

Symmetry & its Applications

Semiconductor Fibers, Metalattices, Energy Materials

_________

Reviews

  1. Antisymmetry: Fundamentals and Applications, Padmanabhan, J. Munro, I. Dabo, V. Gopalan,  Annual Reviews of Materials Research, 50, 255, (2020).
  2. Complex Oxides: Creative Tension in Layered Crystals, Gopalan, R. Engel-Herbert, Nature Materials, News and Views, (2016).
  3. Elastic strain engineering of ferroic oxides, G. Schlom, L. Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X.Q. Pan, R. Ramesh, R. Uecker, MRS Bulletin, 39, 118-130 (2014) doi: 10.1557/mrs.2014.1
  4. Investigating electric field control of magnetism, B. Holcomb, S. Polisetty, A. Fraile-Rodriguez, V. Gopalan, R. Ramesh, International J. Modern Physics B 26, 1230004-1/12 (2012).
  5. Probing Ferroelectrics using Optical Second Harmonic Generation, A. Denev, T. T. A. Lummen, E. Vlahos, V. Gopalan, J. Amer. Cer. Soc. 94[9], 2699-2727 (2011).
  6. Quantitative piezoelectric force microscopy: calibrated experiments, analytical theory, and finite element modeling, L. Tian, A. Vasudevarao, V. Gopalan, in Scanning Probe Microscopy of Functional Materials: Nanoscale Imaging and Spectroscopy, Editors, S. Kalinin, and A. Gruverman, Springer, New York (2010).
  7. Defect-domain wall interactions in trigonal ferroelectrics, V. Gopalan, V. Dierolf, D. Scrymgeour, Annual Reviews of Materials Research, Editors:  D. R. Clarke, V. Gopalan, 37, pp. 449-489 (2007).
  8. Ferroelectric materials, V. Gopalan, K. Schepler, V. Dierolf, I. Biaggio, Handbook of Photonics, Second Edition, Editors: M. C. Gupta, J. Ballato, CRC Press LLC, FL. Pp. 6-1/67(2006).
  9. Crystal growth, characterization, and domain studies in ferroelectric lithium niobate and tantalate, V. Gopalan, J. A. Aust, N. Sanford, K. Kitamura, Y. Furukawa in Handbook of Advanced Electronic and Photonic materials, Editor  H. S. Nalwa, Vol. 4, p. 57-114, (Academic Press, NY). Article download: Download here

Patents

  1. Nonlinear optical Mg-IV-V2 crystals, methods of making the same and devices comprising the same. Patent disclosure, U.S. Patent, U.S. Application No. PCT/US2023/030434, filed August 17, 2023.
  2. Glass compositions, glass articles and methods of making the same, Carly Mathewson, John Mauro, Venkatraman Gopalan, John V. Badding, US Patent 17/549,213 Granted 2022.
  3. Lithium Niobate single crystals and Photo-functional devices K. Kitamura, N. Furukawa, V. Gopalan, T. E. Mitchell, Awarded Feb 27, 2001, US and Japan Patent # 6195197.
  4. Lithium Tantalate single crystals and Photofunctional devices, K. Kitamura, N. Furukawa, V. Gopalan, T. E. Mitchell, Awarded April 4, 2001, US and Japan patent # 6211999.
  5. Domain inverted grating in Ferroelectric crystals with polarization in the crystal plane,  V. Gopalan and Mool C. Gupta, Awarded March. 1998. US patent # 5734772
  6. Domain inverted grating in ferroelectric crystals by electron-beam scanning, Mool C. Gupta, Alan C. G. Nutt and V. Gopalan, Awarded May. 1998. US patent # 5748361

Publications

2023

  1. Symmetry classification and enumeration of square-tile sikku kolams, Venkatraman Gopalan, arxiv  (2023).
  2. Strong Electron-Phonon Coupling driven Pseudogap Modulation and Density-Wave Fluctuations in a Correlated Polar Metal, Huaiyu(Hugo) Wang, Yihuang Xiong, Hari Padmanabhan, Yi Wang, Ziqi Wang, Romain Claes, Guillaume Brunin, Lujin Min, Rui Zu, Maxwell T. Wetherington, Yu Wang, Zhiqiang Mao, Geoffroy Hautier, Long-Qing Chen, Ismaila Dabo, Venkatraman Gopalan, Nature Communications, (2023); DOI
  3. Phase-field model of coupled insulator-metal transitions and oxygen vacancy redox reactions. Yin Shi, Venkatraman Gopalan, and Long-Qing Chen, Phys. Rev. B 107, L201110 (2023), DOI 
  4. Landau-Ginzburg theory of charge density wave formation accompanying lattice and electronic long-range ordering, Anna N. Morozovska, Eugene A. Eliseev, Venkatraman Gopalan, and Long-Qing Chen, Phys. Rev. B 107, 174104 (2023); DOI
  5. Layered Semiconductor Cr32Ga0.68Te2.33with Concurrent Broken Inversion Symmetry and Ferromagnetism: A Bulk Ferrovalley Material Candidate, Yingdong Guan, Leixin Miao, Jingyang He, Jinliang Ning, Yangyang Chen, Weiwei Xie, Jianwei Sun, Venkatraman Gopalan, Jun Zhu, Xiaoping Wang, Nasim Alem, Qiang Zhang, Zhiqiang Mao, J. Am. Chem. Soc. 145, 4683 (2023). DOI
  6. Strong room-temperature bulk nonlinear Hall effect in a spin-valley locked Dirac material, Lujin Min, Hengxin Tan, Zhijian Xie, Leixin Miao, Ruoxi Zhang, Seng Huat Lee, Venkatraman Gopalan, Chao-Xing Liu, Nasim Alem, Binghai Yan, Zhiqiang Mao, Nat. Commun., 14, 364 (2023). DOI
  7. Thermodynamic and electron-transport properties of Ca3Ru2O7 from first-principles phonon calculations and Boltzmann transport theory, Yi Wang, Yihuang Xiong, Tiannan Yang, Yakun Yuan, Shunli Shang, Zi-Kui Liu, Venkatraman Gopalan, Ismaila Dabo, and Long-Qing Chen, Phys. Rev. B. 107, 035118(2023). arxiv,   DOI
  8. High-Throughput Screening Assisted Discovery of a Stable Layered Anti-Ferromagnetic Semiconductor: CdFeP2Se6, Manish Kothakonda, Yanglin Zhu, Yingdong Guan, Jingyang He, Jamin Kidd, Ruiqi Zhang, Jinliang Ning, Venkatraman Gopalan, Weiwei Xie, Zhiqiang Mao, Jianwei Sun, Advanced Functional Materials, 33, 2210965 (2023), DOI
  9. Quantum fluctuations lead to glassy electron dynamics in a good metal, Shashank Kumar Ojha, Sankalpa Hazra, Surajit Bera, Sanat Kumar Gogoi, Prithwijit Mandal, Jyotirmay Maity, A Gloskovskii, C Schlueter, Smarajit Karmakar, Manish Jain, Sumilan Banerjee, Venkatraman Gopalan, Srimanta Middey, arXiv preprint arXiv:2306.14464 (2023). DOI
  10. Bipolaronic nature of the pseudogap in (TaSe4)2I revealed via weak photoexcitation, Yingchao Zhang, Tika Kafle, Wenjing You, Xun Shi, Lujin Min, Na Li, Venkatraman Gopalan, Kai Rossnagel, Lexian Yang, Zhiqiang Mao, Rahul Nandkishore, Henry Kapteyn, Margaret Murnane, (2023) arXiv preprint arXiv:2203.05655; Nano Letters, 23, 18, 8392 (2023). DOI
  11. MgSiP2: An Infrared Nonlinear Optical Crystal with a Large Non-Resonant Phase-Matchable Second Harmonic Coefficient and High Laser Damage Threshold, Jingyang He, Yingdong Guan, Victor Trinquet, Guillaume Brunin, Ke Wang, Robert Robinson, Rui Zu, Suguru Yoshida, Seng Huat Lee, Yu Wang, Yanglin Zhu, Gian-Marco Rignanese, Zhiqiang Mao, and Venkatraman Gopalan, Advanced Optical Materials, 2301060 (2023). DOI: 10.1002/adom.202301060
  12. Computationally-driven discovery of second harmonic generation in EuBa3(B3O6)3 through inversion symmetry breaking, Jingyang He, Louis Alaerts, Yu Wang, Victor Trinquet, Suguru Yoshida, Hemant Yennawar, Victor Sanni, Romain Claes, Rowan Katzbaer, Evan Krysko, Saugata Sarker, Raymond E Schaak, Gian-Marco Rignanese, Geoffroy Hautier, Zhiqiang Mao, Venkatraman Gopalan, Optical Materials Express, 13, 3416 (2023). DOI
  13. Enhancement of second-order optical nonlinearities and nanoscale periodic domain patterning in ferroelectric boron-substituted aluminum nitride thin films, Albert Suceava, John Hayden, Kyle P. Kelley, Yihuang Xiong, Benazir Fazlioglu-Yalcin, Ismaila Dabo, Susan Trolier-McKinstry, Jon-Paul Maria, and Venkatraman Gopalan, Optical Materials Express, 13, pp. 1522-1534 (2023), DOI
  14. Large Enhancements in Optical and Piezoelectric Properties in Ferroelectric Zn1-xMgxO Thin Films through Engineering Electronic and Ionic Anharmonicities, Rui Zu, Gyunghyun Ryu, Kyle P. Kelley, Steven M. Baksa, Leonard C Jacques, Bo Wang, Kevin Ferri, Jingyang He, Long-Qing Chen, Ismaila Dabo, Susan Trolier-McKinstry, Jon-Paul Maria, Venkatraman Gopalan.  Adv, Phys. Res. (2023), ArXiv LinkDOI
  15. Optical Second Harmonic Generation in Anisotropic Multilayers with Complete Multireflection Analysis of Linear and Nonlinear Waves using #SHAARP.ml Package, Rui Zu, Bo Wang, Jingyang He, Lincoln Weber, Akash Saha, Long-Qing Chen, V. Gopalan, arXiv:2307.01368v3, in review, npj Computational Materials (2023); arxiv
  16. Generalized analytical and numerical modeling of optical second harmonic generation in anisotropic crystals and complex heterostructures using #SHAARP package, R. Zu, B. Wang, J. He, L. Weber, Jian-Jun Wang, L-Q. Chen, V. Gopalan, Proceedings volume 12681, Ultrafast Nonlinear Imaging and Spectroscopy XI; 1268106 (2023); SPIE Nanoscience+Engineering, San Diego, CA (2023). DOI
  17. Time domain thermoreflectance measurements and phonon gas modeling of the thermal conductivity of silicon doped indium phosphide pertinent to quantum cascade lasers, C Perez, D Talreja, J Kirch, S Zhang, V Gopalan, D Botez, BM Foley, B Ramos-Alvarado, LJ Mawst, APL Materials, 11, 4 (2023)  DOI
  18. Sn-modified BaTiO3thin film with enhanced polarization, William Nunn, Abinash Kumar, Rui Zu, Bailey Nebgen, Shukai Yu, Anusha Kamath Manjeshwar, Venkatraman Gopalan, James M LeBeau, Richard D James, Bharat Jalan, J. Vacuum Sci. & Tech. A 41, 022701 (2023).DOI
  19. Stabilization of the Polar Structure and Giant Second-Order Nonlinear Response of Single Crystal γ-NaAs95Sb0.05Se2, Abishek K Iyer, Jingyang He, Hongyao Xie, Devin Goodling, Duck‐Young Chung, Venkatraman Gopalan, Mercouri G Kanatzidis, Advanced Functional Materials, 33, 2211969, (2023). DOI
  20. Broadband Dielectric Characterization of Glasses and Other Silicates up to the THz Frequencies, Rocio Rodriguez-Canov, Michael Lanagan, Steven Perini, Xiaojiang Li, Venkatraman Gopalan, 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI) pp.287-288 (2023). DOI

  21. Light-Induced Transitions of Polar State and Domain Morphology of Photo-Ferroelectric Nanoparticles, Eugene A Eliseev, Anna N Morozovska, Yulian M Vysochanskii, Lesya P Yurchenko, Venkatraman Gopalan, Long-Qing Chen, in review, Phys. Rev. B arxiv (2023).
  22. Stoichiometric Control and Optical Properties of BaTiO3 Thin Films Grown by Hybrid MBE, Benazir Fazlioglu Yalcin, Albert Suceava, Tatiana Kuznetsova, Ke Wang, Venkatraman Gopalan, Roman Engel-Herbert, Advanced Materials interfaces,10, 2300018, (2023) DOI
  23. Growth and phase transition of Sr3Zr2O7 single crystals, Ikuya Fukasawa, Yuki Maruyama, Suguru Yoshida, Koji Fujita, Hidehiro Takahashi, Masataka Ohgaki, Masanori Nagao, Satoshi Watauchi, Venkatraman Gopalan, Katsuhisa Tanaka, Isao Tanaka, Crys. Growth, 615, 127241 (2023). DOI
  24. Revealing the short and long-range structural distortions at Nb-doped KTaO3, S. Salmani-Rezaie, T. Schwaigert, S. Hazra, V. Hopalan, D. G. Schlom, K. Ahadi, D. A. Muller, Microscopy and Microanalysis, 29. 1728-30 (2023). DOI
  25. Room temperature flash of single crystal titania: Electronic and optical properties, Devinder Yadav, Yakun Yuan, Venkatraman Gopalan, Rishi Raj, Seohyeon Jo, J. Am. Ceramics Society, 106, 46-52 (2023).  DOI

2022

  1. Interlayer magnetophononic coupling in MnBi2Te4, Hari Padmanabhan, Maxwell Poore, Peter Kim, Nathan Z. Koocher, Vladimir A. Stoica, Danilo Puggioni, Huaiyu Wang, Xiaozhe Shen, Alexander H. Reid, Mingqiang Gu, Maxwell Wetherington, Seng Huat Lee, Richard Schaller, Zhiqiang Mao, Aaron M. Lindenberg, Xijie Wang, James M. Rondinelli, Richard Averitt, Venkatraman Gopalan,  Nature Communications , 13, 1929,(2022).arXiv,  https://doi.org/10.1038/s41467-022-29545-5
  2. Large itinerant electron exchange coupling in the magnetic topological insulator MnBi2Te4, Hari Padmanabhan, Vladimir A. Stoica, Peter Kim, Maxwell Poore, Tiannan Yang, Xiaozhe Shen, Alexander H. Reid, Ming-Fu Lin, Suji Park, Jie Yang, Huaiyu Wang, Nathan Z. Koocher, Danilo Puggioni, Lujin Min, Seng-Huat Lee, Zhiqiang Mao, James M. Rondinelli, Aaron M. Lindenberg, Long-Qing Chen, Xijie Wang, Richard D. Averitt, John W. Freeland, and Venkatraman Gopalan, in review (2022). ArXiv
  3. A topological Kagome magnet in high entropy form, L. Min, M. Sretenovic, T. Heitman, T. W. Valentine, R. Zu, V. Gopalan, C. M. Rost, X. Ke, Z. Mao, Communication Physics (2022). https://doi.org/10.1038/s42005-022-00842-1
  4. Bipolaronic nature of the pseudogap in (TaSe4)2I revealed via weak photoexcitation, Yingchao Zhang, Tika Kafle, Wenjing You, Xun Shi, Lujin Min, Na Li, Venkatraman Gopalan, Kai Rossnagel, Lexian Yang, Zhiqiang Mao, Rahul Nandkishore, Henry Kapteyn, Margaret Murnane, arXiv preprint arXiv:2203.05655
  5. Atomic-Scale Observation of Stacking Domain Structures in a Semiconducting Van Der Waals Ferrovalley Material, VAgP2Se6, Leixin Miao, Seng Huat Lee, Jingyang He, Venkatraman Gopalan, Zhiqiang Mao, Nasim Alem, Link
  6. SnP2S6: A Promising Infrared Nonlinear Optical Crystal with Strong Non-Resonant Second Harmonic Generation and Phase-matchability, Jingyang He, Seng Huat Lee, Francesco Naccarato, Guillaume Brunin, Rui Zu, Yuanxi Wang, Leixin Miao, Huaiyu Wang, Nasim Alem, Geoffroy Hautier, Gian-Marco Rignanese, Zhiqiang Mao, Venkatraman Gopalan, accepted, ACS Photonics (2022). arXiv, https://doi.org/10.1021/acsphotonics.2c00131
  7. ♯SHAARP: An Open-Source Package for Analytical and Numerical Modeling of Optical Second Harmonic Generation in Anisotropic Crystals, Rui Zu, Bo Wang, Jingyang He, Jian-Jun Wang, Lincoln Weber, Long-Qing Chen, Venkatraman Gopalan, in review, (2022).  arXiv:2208.03872 [physics.optics]
  8. Heteroanionic control of exemplary second harmonic generation and phase matchability in 1D LiAsS2-xSex, Benjamin M. Oxley, Jeong Bin Cho, Abishek K. Iyer, Michael J. Waters, Jingyang He, Nathan C. Smith, Chris M. Wolverton, Venkatraman Gopalan, James M. Rondinelli, Joon I. Jang, Mercouri G. Kanatzidis, J. Am. Chem. Soc. 144, 30, 13903 (2022). https://doi.org/10.1021/jacs.2c05447
  9. Computing diffraction patterns of microstructures from phase-field simulations, Tiannan Yang, Cheng Dai; Vladimir A. Stoica, Fei Xue, Huaiyu Wang; Yanzhou Ji, Venkatraman Gopalan, Long-Qing Chen, Acta Materialia, 239, 118258 (2022). doi.org/10.1016/j.actamat.2022.118258
  10. Interplay between oxygen octahedral rotation and deformation in acentric ARTiO4 series toward negative thermal expansion, Yoshida, Suguru; Akamatsu, Hirofumi; Gibbs, Alexandra; Kawaguchi, Shogo; Gopalan, Venkatraman; Tanaka, Katsuhisa; Fujita, Koji, Chemistry of Materials, 34, 14, 6492 (2022). https://doi.org/10.1021/acs.chemmater.2c01245
  11. Low-temperature processed beta-phase In2Se3 ferroelectric semiconductor thin film transistors, Sora Lee, Xiaotian Zhang, Thomas McKnight, Bhavesh Ramkorun, Joan M. Redwing, Venkatraman Gopalan, and Thomas N. Jackson,  2D Materials (2022). https://doi.org/10.1088/2053-1583/ac5b17
  12. Fe3-xInSnxO (x = 0, 0.25, 0.5): A family of corundum derivatives with Sn-induced polarization and above room temperature antiferromagnetic ordering, Frank, Corey; McCabe, Emma; Orlandi, Fabio; Manuel, Pascal; Tan, Xiaoyan; Deng, Zheng; Jin, Changqing; Croft, Mark; Emge, Thomas; Yu, Shukai; Wang, Huaiyu; Gopalan, Venkatraman; Lapidus, Saul; Wu, MeiXia; Li, Man-Rong; Gross, Juliane; Burger, Paul; Mielewczyk-Gryn, Aleksandra; Klimczuk, Tomasz; Xie, Weiwei; Walker, David; Greenblatt, Martha, Chemistry of Materials , 34, 11, 5020-29 (2022). https://doi.org/10.1021/acs.chemmater.2c00312
  13. Ultrasensitive electrode-free and co-catalyst-free detection of nanomoles per hour hydrogen evolution for the discovery of new photocatalysts, Huaiyu(Hugo) Wang, R. Katz, J. Fanghanel, R. E. Schaak, and V. Gopalan,  Review of Scientific Instruments (2022). https://doi.org/10.1063/5.0077650
  14. Homogenization of optical field in nanocrystal-embedded perovskite composites, Yuchen Hou, Jun Zhang, Xianlin Zheng, Yiqing Lu, Alexej Pogrebnyakov, Haodong Wu, Jungjin Yoon, Dong Yang, Luyao Zheng, Venkatraman Gopalan, Thomas M. Brown, James A. Piper, Kai Wang, and Shashank Priya, ACS Energy Letters, 7, 1657-1671 (2022) https://doi.org/10.1021/acsenergylett.2c00608
  15. Overcoming Shockley-Queisser limit using halide perovskite platform? Kai Wang, Luyao Zheng, Yuchen Hou, Amin Nozariasbmarz, Bed Poudel, Jungjin Yoon, Tao Ye, Dong Yang, Alexej V Pogrebnyakov,Venkatraman Gopalan, Shashank Priya, Joule, (2022). Link here.
  16. Femtosecond laser induced surface damage and ablation of tungsten and tungsten carbide in high flux conditions, Minsuk Seo, Shukai Yu, Venkatraman Gopalan, A Leigh Winfrey, in review, Applied Physics B,  DOI: https://doi.org/10.21203/rs.3.rs-1479675/v1

2021

  1. Relativistic spacetime crystals, V. Gopalan, Acta Crystallographica A, DOI: 10.13140/RG.2.2.31083.57126; an accompanying commentary on the significance of this work is here.
  2. Subterahertz collective dynamics of polar vortices, Qian Li, Vladimir A Stoica, Marek Paściak, Yi Zhu, Yakun Yuan, Tiannan Yang, Margaret R McCarter, Sujit Das, Ajay K Yadav, Suji Park, Cheng Dai, Hyeon Jun Lee, Youngjun Ahn, Samuel D Marks, Shukai Yu, Christelle Kadlec, Takahiro Sato, Matthias C Hoffmann, Matthieu Chollet, Michael E Kozina, Silke Nelson, Diling Zhu, Donald A Walko, Aaron M Lindenberg, Paul G Evans, Long-Qing Chen, Ramamoorthy Ramesh, Lane W Martin, Venkatraman Gopalan, John W Freeland, Jirka Hlinka, Haidan Wen, arXiv:2102.05746,  Nature (2021). News and Views.
  3. Tunable nanoscale evolution and topological phase transitions of a polar vortex supercrystal, C. Dai, V. A. Stoica, S. Das, Z. Hong, L. W. Martin, R. Ramesh, J. W. Freeland, H. Wen, V. Gopalan, L-Q. Chen, Advanced Materials, 2106401, https://doi.org/10.1002/adma.202106401
  4. A polar magnetic and insulating double corundum oxide: Mn2MnSbO6 with ordered Mn(II) and Mn(III) ions, Hai L Feng, Chang-Jong Kang, Bongjae Kim, Kyoo Kim, Mark Croft, Sizhan Liu, Trevor A Tyson, Eli Stavitski, Rui Zu, Venkatraman Gopalan, Saul H Lapidus, Corey E Frank, Youguo Shi, David Walker, Martha Greenblatt, Chemistry of Materials, 33, 16, 6522-6529 (2021). 10.1021/acs.chemmater.1c02046
  5. In-plane quasi-single-domain BaTiO3 via interfacial symmetry engineering, J. W. Lee, JW Lee, K Eom, TR Paudel, B Wang, H Lu, H Huyan, S Lindemann, S Ryu, H Lee, TH Kim, Y Yuan, JA Zorn, S Lei, W Gao, T Tybell, V Gopalan, X Pan, A Gruverman, LQ Chen, EY Tsymbal, CB Eom, Nature Communications, 12, 6784 (2021) arXiv:2109.08296 (2021); doi: 1038/s41467-021-26660-7, arXiv:2109.08296 (2021)
  6. Comprehensive Anisotropic Linear Optical Properties of Weyl Semimetals, TaAs and NbAs, Rui Zu, Mingqiang Gu, Lujin Min, Chaowei Hu, Ni Ni, Zhiqiang Mao, James M Rondinelli, Venkatraman Gopalan, arXiv:2011.09036, Phys.  Rev. B, 103, 165137, (2021). https://doi.org/10.1103/PhysRevB.103.165137
  7. Spin valley locking and bulk quantum Hall effect in a noncentrosymmetric Dirac semimetal, BaMnSb2, JY Liu, J Yu, JL Ning, HM Yi, L Miao, LJ Min, YF Zhao, W Ning, KA Lopez, YL Zhu, T Pillsbury, YB Zhang, Y Wang, J Hu, HB Cao, BC Chakoumakos, F Balakirev, F Weickert, M Jaime, Y Lai, Kun Yang, JW Sun, N Alem, V Gopalan, CZ Chang, N Samarth, CX Liu, RD McDonald, ZQ Mao, Nature Communications, 12,1-10 (2021) doi: 10.1038/s41467-021-24369-1
  8. Extreme ultraviolet second harmonic generation spectroscopy in a polar metal, Emma Berger, Sasawat Jamnuch, Can B. Uzundal, Clarisse Woodahl, Hari Padmanabhan, Angelique Amado, Paul Manset, Yasuyuki Hirata, Yuya Kubota, Shigeki Owada, Kensuke Tono, Makina Yabashi, Cuixiang Wang, Youguo Shi, Venkatraman Gopalan, Craig P. Schwartz, Walter S. Drisdell, Iwao Matsuda, John W. Freeland, Tod A. Pascal, Michael Zuerch, Nano Letters, 21, 14, 6095-6101(2021). https://doi.org/10.1021/acs.nanolett.1c01502
  9. Evidence for a magnetic-field induced ideal type-II Weyl state in antiferromagnetic topological insulator Mn(Bi1-xSbx)2Te4. Seng Huat Lee, David Graf, Yanglin Zhu, Hemian Yi, Samuel Ciocys, Eun Sang Choi, Rabindra Basnet, Arash Fereidouni, Aaron Wegner, Yi-Fan Zhao, Lujin Min, Katrina Verlinde, Jingyang He, Ronald Redwing, V Gopalan, Hugh OH Churchill, Alessandra Lanzara, Nitin Samarth, Cui-Zu Chang, Jin Hu, ZQ Mao, Phys. Rev. X, 11, 031032 (2021). Doi:1103
  10. Nano-imaging of strain-tuned stripe textures in a Mott crystal, A. S. McLeod, A. Wieteska, G. Chiriaco, B. Foutty, Y. Wang, Y. Yuan, F. Xue, V. Gopalan, L. Q. Chen, Z. Q. Mao , A. J. Millis, A. N. Pasupathy and D. N. Basov, npj Quantum Materials, 6:46 ; https://doi.org/10.1038/s41535-021-00339-0 (2021).
  11. Dynamics of voltage-driven oscillating insulator-metal transitions, Yin Shi, Amy E Duwel, Dennis M Callahan, Yifei Sun, F Anika Hong, Hari Padmanabhan, Venkatraman Gopalan, Roman Engel-Herbert, Shriram Ramanathan, Long-Qing Chen, Physical Review B, 104, 064308 (2021). Doi: 10.1103/PhysRevB.104.064308
  12. Optimizing accuracy and efficacy in data-driven materials discovery for the solar production of hydrogen, Yihuang Xiong, Quinn T Campbell, Julian Fanghanel, Catherine K Badding, Huaiyu Wang, Nicole E Kirchner-Hall, Monica J Theibault, Iurii Timrov, Jared S Mondschein, Kriti Seth, Rebecca Katz, Andres Molina Villarino, Betül Pamuk, Megan E Penrod, Mohammed M Khan, Tiffany Rivera, Nathan C Smith, Xavier Quintana, Paul Orbe, Craig J Fennie, Senorpe Asem-Hiablie, James L Young, Todd G Deutsch, Matteo Cococcioni, Venkatraman Gopalan, Hector D Abruña, Raymond E Schaak, Ismaila Dabo, Energy and Environmental Science,  (2021). doi.org/10.1039/D0EE02984J
  13. Synchrotron x-ray metrology of dopant distribution and oxidation state in high pressure CVD grown TM2+:ZnSe optical fibers, Michael G Coco, Stephen C Aro, Alexander Hendrickson, James P Krug, Barry Lai, Zhonghou Cai, Pier J Sazio, Sean A McDaniel, Gary Cook, Venkatraman Gopalan, John V Badding, Optical Materials Express, 11(2) 289-298(2021); doi: https://doi.org/10.1364/OME.414201
  14. Aluminosilicate glasses for zinc selenide tunable fiber laser cladding, C. Mathewson, I. Urbina, J. C. Mauro, V. Gopalan, J. V. Badding, J. American Ceramics Society, 104, 691-696 (2020). https://doi.org/10.1111/jace.17471
  15. HPCVD of ZnSxSe1-x claddings for ZnSe Optical Fibers, Michael G. Coco, Justin R. Sparks, Stephen C. Aro, Alexander Hendrickson, James P. Krug, Sean A. McDaniel, Gary Cook, Pier J. Sazio, Venkatraman Gopalan, and John V. Badding, OSA Advanced Photonics, Novel Optical Materials and Applications 2021, Washington, DC United States, 26–29 July 2021, ISBN: 978-1-943580-94-1
  16. Giant non-resonant Infrared Second Order Nonlinearity in γ-NaAsSe2, Jingyang He, Abishek K. Iyer, Michael J. Waters, Sumanta Sarkar, Rui Zu, James M. Rondinelli, Mercouri G. Kanatzidis, Venkatraman Gopalan, Advanced Optical Materials, 2101729, (2021). DOI: 10.1002/adom.20210172
  17. Structure Tuning, Strong Second Harmonic Generation Response, and High Optical Stability of the Polar Semiconductors Na1–xKxAsQ2, Abishek K. Iyer, Jeong Bin Cho, Hye Ryung Byun, Shiqiang Waters, Michael J., Hao, Benjamin M. Oxley, Venkat Gopalan, Christopher Wolverton, James M. Rondinelli, Joon I. Jang, Mercouri G. Kanatzidis, J. American Chem. Soc. 143, 43, 18204-18215 (2021). https://doi.org/10.1021/jacs.1c07993
  18. Electric field-induced polarization responses of noncentrosymmetric crystalline biopolymers in different frequency regimes – a case study on unidirectionally aligned chitin crystals, Chae, R. Zu, A. B. Meddeb, Y. Ogawa, Z. Chen, V. Gopalan, Z. Ouanaies, S. H. Kim, Biomolecules, 22, 1901-1909 (2021). https://doi.org/10.1021/acs.biomac.0c01799
  19. Shear-induced unidirectional deposition of bacterial cellulose microfibrils using rising bubble stream cultivation, I. Chae, S. M. Q. Bokhari, X. Chen, R. Zu, K. Liu, A. Borhan, V. Gopalan, J. M. Catchmark, S. H. Kim, Carbohydrate polymers, 255, 117328 (2021). https://doi.org/10.1016/j.carbpol.2020.117328
  20. Cocrystalline polymer films exhibiting second-order nonlinear optical properties, Y. Xu, Zu, N. H. Yennawar, V. Gopalan, R. J. Hickey, ACS Macro Letters, 1216-1222 (2021). doi.org/10.1021/acsmacrolett.1c00345

2020

  1. Ir6In32S21: A polar, metal-rich semiconducting subchalcogenide, Jason F. Khoury, Jiangang He, Jonathan E. Pfluger, Ido Hadar, Mahalingam Balasubramanian, Constantinos C. Stoumpos, Rui Zu, Venkatraman Gopalan, Chris Wolverton, and Mercouri G. Kanatzidis, Chem. Sci. (2020). DOI: 10.1039/C9SC05609B
  2. Making EuO multiferroic by epitaxial strain engineering, Veronica Goian, Rainer Held, Eric Bousquet, Yakun Yuan, Alexander Melville, Hua Zhou, Venkatraman Gopalan, Phillipe Ghosez, Nicola A Spaldin, Darrell G Schlom, Stanislav Kamba, Communications Materials, 1 (1), 1-10 (2020). https://doi.org/10.1038/s43246-020-00075-1
  3. Wedge reversion antisymmetry and Forty-One Types of Physical Quantities in Arbitrary Dimensions, Venkatraman Gopalan, arXiv:1910.09286 [physics.gen-ph] Acta Crystallographica, A26, 318-327 (2020).

  4. Antisymmetry: Fundamentals and Applications, Hari Padmanabhan, Jason Munro, Ismaila Dabo, Venkatraman Gopalan, Annual Reviews of Materials Research, Annual Reviews of Materials Research50, 255, (2020).
  5. Achieving Minimal Heat Conductivity by Ballistic Confinement in Phononic Metalattices, Chen, Weinan; Talreja, Disha; Goodling, Devon; Mahale, Pratibha; Nova, Nabila Nabi; Cheng, Hiu; Russell, Jennifer; Yu, Shih-Ying ; Poilvert, Nicolas; Mahan, Gerald; Mohney, Suzanne; Crespi, Vincent; Mallouk, Thomas; Badding, John; Foley, Brain; Gopalan, Venkatraman; Dabo, Ismaila, ACS Nano 14, 4235-4243 (2020).
  6. Continuous-Wave Fe2+:ZnSe mid-IR Optical Fiber Lasers, Michael G. Coco Jr., Stephen C. Aro, Sean A. McDaniel, Alexander Hendrickson, James P. Krug, Pier J. Sazio, Gary Cook, Venkatraman Gopalan and John V. Badding, Optics Express (2020).
  7. Chromium Doped Zinc Selenide Optical Fiber Lasers, Justin R. Sparks, Stephen C. Aro, Rongrui He, Pier J. Sazio, Melanie L. Goetz, Sean A. McDaniel, Patrick A. Berry, Gary Cook, Venkatraman Gopalan, and John V. Badding, Optical Materials Express, 10, 1843-1852 (2020).
  8. Nondestructive measurements of the mechanical and structural properties of nanostructured metalattices, Abad et. al. Nano Lett. , 20, 5, 3306-3312 (2020). doi.org/10.1021/acs.nanolett.0c00167
  9. SrNbO3 as a transparent conductor in the visible and ultraviolet spectra, Y. Park, J. Roth, D. Oka, Y. Hirose, T. Hasegawa, A. Paul, A. Pogrebnyakov, V. Gopalan, T. Birol, R. Engel-Herbert, Communications Physics, 3, 102 (2020) doi: 10.1038/s42005-020-0372-9.
  10. Chirality-dependent second harmonic generation of MoS2 nanoscroll with enhanced efficiency, Q. Qian, R. Zhu, Q. Ji, G. S. Jung, K. Zhang, Y. Zhang, M. J. Buehler, J. Kong, V. Gopalan, S. Huang, ACS Nano, doi.org/10.1021/acsnano.0c05189
  11. High-Pressure, High-Temperature Synthesis and Characterization of Polar and Magnetic LuCrWO6, S. W. Kim, et. al. Inorganic Chemistry, 59, 6, 3579 (2020) doi.org/10.1021/acs.inorgchem.9b02900
  12. Nanoengineering giant room temperature ferroelectricity into orthorhombic SmMnO3 films, Eun-Mi Choi, Tuhin Maity, Ahmed Kursumovic, Ping Lu, Oon Jew Lee, Zenxhing Bi, Yoonsang Park, Bonan Zhu, Rui Wu, Venkatraman Gopalan, Haiyan Wang, and Judith L. MacManus-Driscoll, Nature Communications, 11, 2207 (2020). doi.org/10.1038/s41467-020-16101-2
  13. Searching for new ferroelectric materials using high-throughput databases: An experimental perspective on BiAlO3 and BiInO3, M. Acharya, S. Mack, A. Fernandez, J. Kim, H. Wang, K. Eriguchi, D. Meyers, V. Gopalan, J. Neaton, L. W. Martin, Chemistry of Materials, 17, 7274-7283 (2020). org/10.1021/acs.chemmater.0c01770

 

2019

  1. Surface Chiral Metals in a bulk half-integer quantum Hall insulator, JY Liu, J Yu, JL Ning, L Miao, LJ Min, KA Lopez, YL Zhu, HM Yi, T Pillsbury, YB Zhang, Y Wang, J Hu, HB Cao, F Balakirev, F Weickert, M Jaime, Kun Yang, JW Sun, N Alem, V Gopalan, CZ Chang, N Samarth, CX Liu, RD Mcdonald, ZQ Mao, arXiv:1907.06318(2019)
  2. High-Pressure Synthesis and Ferrimagnetism of Ni3TeO6-Type Mn2ScMO6 (M = Nb, Ta), Hai L Feng, Zheng Deng, Mark Croft, Saul H Lapidus, Rui Zu, Venkatraman Gopalan, Christoph P Grams, Joachim Hemberger, Sizhan Liu, Trevor A Tyson, Corey E Frank, Changqing Jin, David Walker, Martha Greenblatt, Inorg. Chem., 58, 23, 15953-15961 (2019). https://doi.org/10.1021/acs.inorgchem.9b02468
  3. Atomic scale measurement of polar entropy, Debangshu Mukherjee, Sergei Prokhorenko, Leixin Miao, Ke Wang, Eric Bousquet, Venkatraman Gopalan, Nasim Alem, Physical Review B, 100 (10) 104102; arXiv preprint arXiv:1807.06525, (2019).
  4. Comprehensive magnetic phase diagrams of the polar metal Ca3(Ru95Fe0.05)2O7, S. Lei, S. Chikara, D. Puggioni, J. Peng, M. Zhu, M. Gu, W. Zhao, Y. Wang, Y. Yuan, H. Akamatsu, M. H. W. Chan, X. Ke, Z. Mao, J. M. Rondinelli, M. Jaime, J. Singleton, F. Weickert, V. S. Zapf, and V. Gopalan, Physical Review B, 99, 224411 (2019).
  5. Competing polar and antipolar structures in the Ruddlesden-Popper layered perovskite Li2SrNb2O7, R. Uppuluri, H. Akamatsu, A. Sen Gupta, H. Wang, C. M. Brown, K. E. Agueda Lopez, N. Alem, V. Gopalan, T. E. Mallouk, Chemistry of Materials, 31, 12 4418-4425 (2019).
  6. A-site cation size effect on oxygen octahedral rotations in acentric Ruddlesden-Popper alkali rare earth titanates, H. Akamatsu, K. Fujita, T. Kuge, A. Sen Gupta, J. M. Rondinelli, I. Tanaka, K. Tanaka, V. Gopalan, Physics Review Materials 3, 065001 (2019).
  7. Large Tetragonality and Room Temperature Ferroelectricity in Compressively Strained CaTiO3 Thin Films, Ryan C. Haislmaier, Yanfu Lu, Jason Lapano, Hua Zhou, Nasim Alem, Susan B. Sinnott, Roman Engel-Herbert, and Venkatraman Gopalan, APL Materials, 7, 051104 (2019).
  8. Optical creation of a supercrystal with three-dimensional nanoscale periodicity, V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L-Q. Chen, H. Wen, V. Gopalan, J. W. Freeland, Nature Materials, 18, 377 (2019).
  9. Implementation of Distortion Symmetry for the Nudged Elastic Band Method with DiSPy [cond-mat.mtrl-sci]. Jason M. Munro, Vincent S. Liu, Venkatraman Gopalan, and Ismaila Dabo, arXiv:1810.01911v1 Computational Materials.5, 52 (2019).
  10. Ultrafast quasiparticle dynamics in correlated semimetal Ca3Ru2O7, Yakun Yuan, Peter Kissin, Danilo Puggioni, Kevin Cremin, Shiming Lei, Yu Wang, Zhiqiang Mao, James M Rondinelli, Richard D Averitt, Venkatraman Gopalan, arXiv preprint arXiv:1901.02512, Physical Review B, 99, 155111(2019).
  11. Relaxor behavior in ordered lead magnesium niobite (PbMn1/3Nb2/3O3) thin films, S. Shetty, A. Damodaran, K. Wang, Y. Yuan, V. Gopalan, L. Martin, S. Trolier-McKinstry, Advanced Functional Materials, 29 (5), 1804358 (2018).
  12. Structural dynamics of LaVO3 on the nanosecond time scale, Matthew Brahlek, Vladimir A. Stoica, Jason Lapano,Lei Zhang, Hirofumi Akamatsu, I-Cheng Tung, Venkatraman Gopalan, Donald A. Walko, Haidan Wen, John W. Freeland, and Roman Engel-Herbert, Structural Dynamics, 6, 014502 (2019).
  13. Atomic scale electronic structure of domain walls in a polar metal, Greg Stone, Danilo Puggioni, Shiming Lei, Mingqiang Gu, Ke Wang, Yu Wang, Jianjian Ge, Xue-Zeng Lu, Zhiqiang Mao, James M Rondinelli, Venkatraman Gopalan, Physical Review B, 99, 014105 (2019).
  14. Emergent room temperature phase in CaTiO3 nanoparticles and single crystals, Mariola O Ramirez, Tom TA Lummen, Irene Carrasco, Eftihia Barnes, Ulrich Aschauer, Dagmara Stefanska, Arnab Sen Gupta, Carmen de las Heras, Hirofumi Akamatsu, Martin Holt, Pablo Molina, Andrew Barnes, Ryan C Haislmaier, Przemyslaw J Deren, Carlos Prieto, Luisa E Bausá, Nicola A Spaldin, Venkatraman Gopalan, APL Materials, 7, 011103 (2019).
  15. MnFe5Ru0.5O3: an above-room-temperature antiferromagnetic semiconductor, Xiaoyan Tan, Emma E McCabe, Fabio Orlandi, Pascal Manuel, Maria Batuk, Joke Hadermann, Zheng Deng, Changqing Jin, Israel Nowik, Rolfe Herber, Carlo U Segre, Sizhan Liu, Mark Croft, Chang-Jong Kang, Saul Lapidus, Corey E Frank, Haricharan Padmanabhan, Venkatraman Gopalan, Meixia Wu, Man-Rong Li, Gabriel Kotliar, David Walker, Martha Greenblatt, J. Mater. Chem. C, 7, 509-522 (2019).
  16. Multidimensional thermal analysis of an ultrawide bandgap AlGaN channel high electron mobility transistor, James Spencer Lundh, Bikramjit Chatterjee, Yiwen Song, Albert G. Baca, Robert J. Kaplar, Thomas E. Beechem, Andrew A. Allerman, Andrew M. Armstrong, Anushka Bansal, Disha Talreja, Alexej Pogrebnyakov, Eric Heller, Venkatraman Gopalan, Joan M. Redwing, Brian Foley, and Sukwon Choi, Appl. Phys. Lett. 115, 153503 (2019); https://doi.org/10.1063/1.5115013
  17. Probing thermal and acoustic dynamics of inverse silicon metallatices, C. Bevis, B. Abad, J. Knobloch, T. Frazer, A. Adak, J. Hernández-Charpak, H. Cheng, A. Grede, N. Giebink, N. Nova, T. Mallouk, P. Mahale, W. Chen, Y. Xiong, I. Dabo, V. Crespi, D. Talreja, H. Kapteyn, V. Gopalan, J. Badding, M. Murnane, Microscopy and Micronalysis, 25, S2, August 2019, pp. 2174-2175. DOI: https://doi.org/10.1017/S1431927619011607
  18. Designing Optimal Perovskite Structure for High Ionic Conduction, Ran Gao, Abhinav Jain, Shishir Pandya, Yongqi Dong, Yakun Yuan, Hua Zhou, Liv R. Dedon, Vincent Thoreton, Sahar Saremi, Ruijuan Xu, Aileen Luo, Ting Chen, Venkatraman Gopalan, Elif Ertekin, Tatsumi Ishihara, Nicola H. Perry, Dallas R. Trinkle, and Lane W. Martin, Advanced Materials, https://doi.org/10.1002/adma.201905178

2018

  1. Three-dimensional atomic scale electron density reconstruction of octahedral tilt epitaxy in functional perovskites, Yakun Yuan, Yanfu Lu, Greg Stone, Ke Wang, Charles M Brooks, Darrell G Schlom, Susan B Sinnott, Hua Zhou, Venkatraman Gopalan, Nature Communications, 9, 5220 (2018).
  2. Discovering minimum energy pathways via distortion symmetry groups, Jason M. Munro, Hirofumi Akamatsu,Haricharan Padmanabhan, Vincent S. Liu, Yin Shi, Long-Qing Chen, Brian K. VanLeeuwen, Ismaila Dabo, and Venkatraman Gopalan, Physical Rev. B, 98, 085107 (2018).
  3. Linear and nonlinear optical probe of the ferroelectric-like phase transition in a polar metal LiOsO3, Haricharan Padmanabhan, Yoonsang Park, Danilo Puggioni, Yakun Yuan, Yanwei Cao, Lev Gasparov, Youguo Shi, Jak Chakhalian, James M. Rondinelli, and Venkatraman Gopalan, Appl. Phys. Lett. 113, 122906 (2018).
  4. Strain-induced ferroelectricity and spin-lattice coupling in SrMnO3 thin films, JW Guo, PS Wang, Y Yuan, Q He, JL Lu, TZ Chen, SZ Yang, YJ Wang, R Erni, MD Rossell, V Gopalan, HJ Xiang, Y Tokura, P Yu, Physical Review B, 97, 235135 (2018).
  5. Hybrid Improper Ferroelectricity in (Sr,Ca)3Sn2O7 and Beyond: Universal Relationship between Ferroelectric Transition Temperature and Tolerance Factor in n = 2 Ruddlesden−Popper Phases, Suguru Yoshida, Hirofumi Akamatsu, Ryosuke Tsuji, Olivier Hernandez, Haricharan Padmanabhan, Arnab Sen Gupta, Alexandra S. Gibbs, Ko Mibu, Shunsuke Murai, James M. Rondinelli, Venkatraman Gopalan, Katsuhisa Tanaka, and Koji Fujita, Journal of the Am. Chem. Soc. 140, 15690−15700 (2018).
  6. Theory-Guided Synthesizability of Metastable Lead-Free Piezoelectric Polymorphs, Lauren M. Garten, Shyam Dwaraknath, Julian Walker, John Magnum, Paul F. Ndione, Yoonsang Park, Dan Beaton, Venkataraman Gopalan, Brian Gorman, Laura Schelhas, Sanjini Nanayakkara, Mike Toney, Susan Trolier-McKinstry, Kristin Persson, David S. Ginley, Advanced Materials 30, 1800159 (2018).
  7. Ferroelectric Sr3Zr2O7: Competition between Hybrid Improper Ferroelectric and Antiferroelectric Mechanisms, Suguru Yoshida, Koji Fujita, Hirofumi Akamatsu, Olivier Hernandez, Arnab Sen Gupta, Forrest G. Brown, Haricharan Padmanabhan, Alexandra S. Gibbs, Toshihiro Kuge, Ryosuke Tsuji, Shunsuke Murai, James M. Rondinelli, Venkatraman Gopalan, and Katsuhisa Tanaka, Advanced Funct. Mater. (2018), 28, 1801856,
  8. Artificial two-dimensional polar metal at room temperature, Yanwei Cao, Zhen Wang, Se Young Park, Yakun Yuan, Xiaoran Liu, Sergey M Nikitin, Hirofumi Akamatsu, Mikhail Kareev, Srimanta Middey, Derek Meyers, P Thompson, PJ Ryan, Padraic Shafer, A N’Diaye, E Arenholz, Venkatraman Gopalan, Yimei Zhu, Karin M Rabe, J Chakhalian, Nature Communications, 9, 1547 (2018).
  9. Rotomagnetic coupling in fine-grained multiferroic BiFeO3: theory and experiment, Anna N. Morozovska, Eugene A. Eliseev, Maya D. Glinchuk, Olena M. Fesenko, Vladimir V. Shvartsman, Venkatraman Gopalan, Maxim V. Silibin, and Dmitry V. Karpinsky, Phys. Rev. B. (2018).
  10. Observation of Quasi-two-dimensional Polar Domains and Ferroelastic Switching in a Metal, Shiming Lei, Mingqiang Gu, Danilo Puggioni, Greg Stone, Jin Peng, Jianjian Ge, Yu Wang, Baoming Wang, Yakun Yuan, Ke Wang, Zhiqiang Mao, James M. Rondinelli, Venkatraman Gopalan, Nano Letters (2018).
  11. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics, Xiaoyu Ji, Hiu Yan Cheng, Alex J Grede, Alex Molina, Disha Talreja, Suzanne E Mohney, Noel C Giebink, John V Badding, Venkatraman Gopalan, APL Materials, 6, 046105 (2018).
  12. Spatio-Temporal Symmetry – Crystallographic Point Groups with Time Translations and Time Inversion, Vincent V. Liu, Brian K. VanLeeuwen, Haricharan Padmanabhan, Jason Munro, Ismaila Dabo, Venkatraman Gopalan and Daniel B. Litvin, Acta Crystallographica A74, 1-4 (2018).
  13. Terahertz Emission from Hybrid Perovskites Driven by Ultrafast Charge Separation and Strong Electron–Phonon Coupling, Burak Guzelturk, Rebecca A. Belisle, Matthew D. Smith, Karsten Bruening, Rohit Prasanna, Yakun Yuan, Venkatraman Gopalan, Christopher J. Tassone, Hemamala I. Karunadasa, Michael D. McGehee, and Aaron M. Lindenberg, Advanced Mater. 30, 1704737, (2018).
  14. Light-Activated Gigahertz Ferroelectric Domain Dynamics, Hirofumi Akamatsu, Yakun Yuan, Vladimir A. Stoica, Greg Stone, Tiannan Yang, Zijian Hong, Shiming Lei, Yi Zhu, Ryan C. Haislmaier, John W. Freeland, Long-Qing Chen, Haidan Wen, and Venkatraman Gopalan, Physical Review Letters 120, 096101 (2018).
  15. Continuously Tuning Epitaxial Strains by Thermal Mismatch, Lei Zhang,Yakun Yuan, Jason Lapano, Matthew Brahlek, Shiming Lei, Bernd Kabius, Venkatraman Gopalan, and Roman Engel-Herbert, ACS Nano 12, 1306−1312, (2018).
  16. YCrWO6: Polar and Magnetic Oxide with CaTa2O6‐Related Structure, Sun Woo Kim, Thomas J. Emge, Zheng Deng,Ritesh Uppuluri, Liam Collins, Saul H. Lapidus, Carlo U. Segre, Mark Croft, Changqing Jin, Venkatraman Gopalan,Sergei V. Kalinin and Martha Greenblatt, Chemistry of Mater. 30, 1045−1054 (2018).
  17. Random anion distribution in MSxSe2−x (M = Mo, W) crystals and nanosheets, Minh An T. Nguyen, Arnab Sen Gupta, Jacob Shevrin, Hirofumi Akamatsu, Pengtao Xu, Zhong Lin, Ke Wang, Jun Zhu, Venkatraman Gopalan, Mauricio Terrones and Thomas E. Mallouk, RSC Adv., 8, 9871, (2018).

2017

  1. Spatio-Temporal Symmetry –Point Groups with time Translations, Haricharan Padmanabhan, Maggie L Kingsland, Jason M Munro, Daniel B Litvin, Venkatraman Gopalan, Symmetry, 9, 187 (2017).
  2. Emergent Low‐Symmetry Phases and Large Property Enhancements in Ferroelectric KNbO3 Bulk Crystals, Tom TA Lummen, J Leung, Amit Kumar, X Wu, Y Ren, Brian K VanLeeuwen, Ryan C Haislmaier, Martin Holt, Keji Lai, Sergei V Kalinin, Venkatraman Gopalan, Advanced Materials, 29, (2017).
  3. A (II) GeTeO6 (A= Mn, Cd, Pb): Non-Centrosymmetric Layered Tellurates with PbSb2O6-Related Structure, Sun Woo Kim, Zheng Deng, Shuang Yu, Haricharan Padmanabhan, Weiguo Zhang, Venkatraman Gopalan, Changqing Jin, Martha Greenblatt, Inorganic Chemistry, 56, (2017).
  4. A Comprehensive Thermodynamic Potential and Phase Diagram for Multiferroic Bismuth Ferrite, V. Karpinsky, I.O. Troyanchuk, S.A. Gavrilov, M.V. Silibin, Dr. E.A. Eliseev, Prof. M.D. Glinchuk, Dr. Fei Xue, Prof. V. Gopalan, Prof. L.-Q. Chen, Dr. A. Franz, Dr. A. N. Morozovska, npj Computational Materials 3, 1(2017).
  5. Magnetostriction-Polarization Coupling in Multiferroic Mn2MnWO6Man-Rong Li, Emma McCabe, Peter W. Stephens, Mark Croft, Liam F. Collins, Sergei V. Kalinin, Zheng Deng, Maria Retuerto, Arnab Sen Gupta, Haricharan Padmanabhan, Venkatraman Gopalan, Christoph P. Grams, Joachim Hemberger, Fabio Orlandi, Pascal Manuel, Wen-Min Li, Chang-Qing Jin, Dave Walker, Martha Greenblatt, Nature Communications, 8: 2037, (2017).
  6. Sub-wavelength modulation of c(2) optical nonlinearity in organic thin films, Y. Yan, Y. Yuan, B. Wang, V. Gopalan, N. C. Giebink, Nature Communications, (2017).
  7. High-Quality LaVO3 Films as Solar Energy Conversion Material, Hai-Tian Zhang, Matthew J Brahlek, Xiaoyu Ji, Shiming Lei, Jason Lapano, John W Freeland, Venkatraman Gopalan, Roman Engel-Herbert, ACS Applied Materials & Interfaces, 9 (14), pp 12556–12562 (2017).
  8. A silicon microwire under a three-dimensional anisotropic tensile stress, Xiaoyu Ji, Nicolas Poilvert, Wenjun Liu, Yihuang Xiong, Hiu Yan Cheng, John V Badding, Ismaila Dabo, Venkatraman Gopalan, Appl. Phys. Lett110, 091911 (2017).
  9. Polar Oxides without Inversion Symmetry through Vacancy and Chemical Order, Joshua Young, Eun Ju Moon, Debangshu Mukherjee, Greg Stone, Venkatraman Gopalan, Nasim Alem, Steven J May, James M Rondinelli, J. Am. Chem. Soc. 139(7), pp 2833–2841 (2017).
  10. A Listing of Crystallographic Point Groups in Space and Time, Maggie L Kingsland, Haricharan Padmanabhan, Jason M Munro, Daniel B Litvin, Venkatraman Gopalan, arXiv preprint arXiv:1701.04088 (2017).

2016

  1. Design of next generation mid-infrared multimaterial fiber optics, X. Ji, R. L. Page, V. Gopalan, Proceedings of the COMSOL conference, Boston, October (2016).
  2. Complex Oxides: Creative Tension in Layered Crystals, Gopalan, R. Engel-Herbert, Nature Materials, News and Views, (2016).
  3. Single crystal germanium core optoelectronic fibers, Ji, R. L. Page, S. Chaudhuri, W. Liu, S-Y. Yu, S. E. Mohney, J. V. Badding, V. Gopalan, Advanced Optical Materials, (2016).
  4. Competing structural instabilities in the Ruddlesden-Popper derivatives HRTiO4 (R=Rare earths): Oxygen Octahedral rotations inducing noncentrosymmetry and layer sliding retaining centrosymmetry, SenGupta, H. Akamatsu, F. G. Brown, Minh An T. Nguyen, M. E. Strayer, S. Lapidus, S. Yoshida, K. Fujita, K. Tanaka, I. Tanaka, T. E. Mallouk, V. Gopalan, ACS Chemistry of Materials, (2016).
  5. Single crystal silicon optical fiber by direct laser crystallization, X. Ji, S. Lei, S-Y. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y-H. Xiong, I. Dabo, S. Mohney, J. V. Badding, V. Gopalan, ACS Photonics (2016).
  6. Unleashing strain induced ferroelectricity in complex oxide thin films via precise stoichiometry control, R. C. Haislmaier, E. D. Grimley, M. D. Biegalski, J. M. Lebeau, S. Trolier-McKinstry, V. Gopalan, R. E. Herbert, Advanced Functional Materials, (2016).
  7. Low-temperature cationic rearrangement in a bulk metal oxide, Man-Rong Li, Maria Retuerto, Peter W. Stephens, Mark Croft, Santu Baidya, Tanusri Saha-Dasgupta, Denis Sheptyakov, Vladimir Pomjakushin, Zheng Deng, Hirofumi Akamatsu, Venkatraman Gopalan, Javier Sánchez-Benítez, Felix O. Saouma, Joon I. Jang, David Walker, Martha Greenblatt, Angewandte Chemie, 128, 10016-10021 (2016).
  8.  Fast Magnetic Domain-Wall Motion in a Ring-Shaped Nanowire Driven by a Voltage,  Jia-Mian Hu, Tiannan Yang, Kasra Momeni, Xiaoxing Cheng, Lei Chen, Shiming Lei, Shujun Zhang, Susan Trolier-McKinstry, Venkatraman Gopalan, Gregory P Carman, Cewen Nan, Long-Qing Chen, Nano Letters (2016).
  9. Imprinting of Local Metallic States into VO2 with Ultraviolet Light, Hai-Tian Zhang,
 Lu Guo,
 Greg Stone, Lei Zhang,
Yuan-Xia Zheng,
Eugene Freeman,
Derek W. Keefer,
Subhasis Chaudhuri,
Hanjong Paik,
Jarrett A. Moyer,
Michael Barth,
Darrell G. Schlom,
John V. Badding,
Suman Datta,
Venkatraman Gopalan,
Roman Engel-Herbert, Advanced Functional Materials, (2016).
  10. PbMn(IV)TeO6: A new noncentrosymmetric layered honeycomb magnetic oxide, W. Kim, Z. Deng, M-R. Li, M. Croft, A. Sen Gupta, H. Akamatsu, V. Gopalan, M. Greenblatt, Inorganic Chemistry, 55, 1333-1338, (2016).
  11. Atomic-scale imaging of competing polar states in a Ruddlesden-Popper layered oxide, Stone, C. Ophus, T. Birol, J. Ciston, C-H. Lee, K. Wang, C. J. Fennie, D. G. Schlom, N. Alem, V. Gopalan, Nature Communications doi:10.1038/ncomms12572 (2016).
  12. Improper inversion symmetry breaking and piezoelectricity through oxygen octahedral rotations in layered perovskite family, LiRTiO4 (R= rare earths), Sen Gupta, H. Akamatsu, M. E. Strayer, S. Lei, T. Kuge, K. Fujita, C. dela Cruz, A. Togo, I. Tanaka, K. Tanaka, T. E. Mallouk, and V. Gopalan, Advanced Electronic Materials, 10.1002/aelm.201500196 (2016).
  13. Polar Metals by Geometric Design, T. H. Kim, D. Puggioni, Y. Yuan, L. Xie, Zhou, N. Campbell, P. J. Ryan, Y. Choi, J.-W. Kim, J. R. Patzner, S. Rzchowski, X. Q.Pan, V. Gopalan, J. M. Rondinelli, C-B. Eom, doi:10.1038/nature17628, Nature 533, 68-72 (2016).
  14. Emergent non-centrosymmetry and piezoelectricity driven by oxygen octahedral rotations in n = 2 Dion-Jacobson phase layer perovskites, M. E. Strayer, A. Sen Gupta, H. Akamatsu, S. Lei, N. A. Benedek, V. Gopalan, and T. E. Mallouk, Advanced Functional Materials, 26, 1930-1937 (2016). DOI: 10.1002/adfm.201504046 (primary support, IRG1) 
  15. Interfacial Octahedral Rotation Mismatch Control of the Symmetry and Properties of SrRuO3, Ran Gao, Yongqi Dong, Han Xu, Hua Zhou, Yakun Yuan, Venkatraman Gopalan, Chen Gao, Dillon D Fong, Zuhuang Chen, Zhenlin Luo, Lane W Martin, ACS Appl. Mater. Interfaces, 2016, 8 (23), pp 14871–14878
  16. Crystalline Silicon Optical Fibers with Low Optical Loss, Subhasis Chaudhuri, Justin R Sparks, Xiaoyu Ji, Mahesh Krishnamurthi, Li Shen, Noel Healy, Anna C Peacock, Venkatraman Gopalan, John V Badding, ACS Photonics, 2016, 3 (3), 378–384
  17. Stoichiometry as key to strain-enabled ferroelectricity in compressively strained SrTiO3 thin films, Ryan C. Haislmaier, Everett Grimley, Mike Biegalski, James LeBeau, Venkatraman Gopalan & Roman Engel-Herbert, Phys. Lett. 109, 032901 (2016).
  18. Chemistry, growth kinetics, and epitaxial stabilization of Sn2+ in Sn-doped SrTiO3 using (CH3)6Sn2 tin precursor, Tianqi Wang, Krishna Chaitanya Pitike, Yakun Yuan, Serge M. Nakhmanson, Venkatraman Gopalan, and Bharat Jalan, APL Materials, (2016).
  19. Depinning of the ferroelectric domain wall in congruent LiNbO3, Lee, V. Gopalan, S. R. Phillpot, Appl. Phys. Lett. 109, 082905 (2016).
  20. Relaxor Ferroelectric Behavior in Barium Strontium Titanate, M. Garten, M. Burch, A. Sen Gupta, R. Haislmaier, P. Lam, D. Harris, V. Gopalan, E.C. Dickey, J.-P. Maria, and S. Trolier-McKinstry, Journal of the American Ceramics Society (2016).
  21. Quantitative lateral and vertical piezoresponse force microscopy on a PbTiO3 single crystal, Lei, Tae-Yeong Koo, Wenwu Cao, Eugene A Eliseev, Anna N Morozovska, S-W Cheong, Venkatraman Gopalan, J. Appl. Phys. 120, 124106 (2016).
  22. Aberration corrected STEM imaging of domains walls in LiNbO3Mukherjee, G. Stone, K. Wang, V. Gopalan, N. Alem, Proceedings of Microscopy and Microanalysis, 22,Supplement S3, 914-915 (2016).
  23. Cr2+: ZnSe fiber lasers, C. Aro, J. R. Sparks, S. A. McDaniel, M. G. Coco, A. T. Hendrickson, V. Gopalan, G. Cook, J. V. Badding, (Conference Presentation) Lasers Congress 2016 (ASSL, LSC, LAC) OSA Technical Digest (online) (Optical Society of America, 2016).
  24. Ultrafast spatio-temporal mapping of gigahertz lattice distortion in a ferroelectric crystal, Gopalan, Y. Yuan, Proc. SPIE 9956, Ultrafast Nonlinear Imaging and Spectroscopy IV, 99560S (November 2, 2016); doi:10.1117/12.2238307.
  25. X-ray diffraction and spectroscopy of photoinduced ferroic superstructures, Vladimir A. Stoica, Haidan Wen, Xiaoyi Zhang, Zhan Zhang, John W. Freeland, L. W. Martin, R. Ramesh, V. Gopalan,
 SPIE 9956, Ultrafast Nonlinear Imaging and Spectroscopy IV, 99560W (November 2, 2016).

2015

  1. Influence of interface coherency on ferroelectric switching of superlattice BaTiO3/SrTiO3, Wu, X. Ma, Y. Li, C-B. Eom, D. G. Schlom, V. Gopalan, L-Q. Chen, Appl. Phys. Lett. 107, 122906 (2015).
  2. Antisymmetry of Distortions, Brian K. VanLeeuwen, V. Gopalan, Nature Communications, 6, 8818 (2015).
  3. A labile hydride strategy to synthesize heavily nitrided BaTiO3, Takeshi Yajima, Fumitaka Takeiri, Kohei Aidzu, Hirofumi Akamatsu, Koji Fujita, Masatoshi Ohkura, Wataru Yoshimune, Shiming Lei, Venkatraman Gopalan, Katsuhisa Tanaka, C. M. Brown, Mark A. Green, Takafumi Yamamoto, Yoji Kobayashi, and Hiroshi Kageyama, Nature Chemistry, 7, 1017-1023 (2015).
  4. Rotomagnetic coupling influence on the magnetic properties of antiferrodistortive antiferromagnets, A. Eliseev, M. D. Glinchuk, V. Gopalan, A. N. Morozovska, Journal of Applied Physics, 118, 144101 (2015).
  5. Correlated metals as transparent conductors, Lei Zhang, Yuanjun Zhou, Lu Guo, Weiwei Zhao, Anna Barnes, Haitian Zhang, Craig Eaton, Hamna F. Haneef, Nikolas J. Podraza, Moses H. W. Chan, Venkatraman Gopalan, Karin M. Rabe, Roman Engel-Herbert, Nature Materials, (2015).
  6. A topological approach to creating any pulli kolam, an artform from southern India, V. Gopalan, B. VanLeeuwen, Forma 30, 35-41 (2015). https://arxiv.org/abs/1503.02130
  7. Affine and Euclidean normalizers of the subperiodic groups, K. VanLeeuwen, P. V. De Jesus, D. B. Litvin, and V. Gopalan, Acta Cryst. A71, 150-160 (2015).
  8. Linear antidistortive-antiferromagnetic effect in multiferroics: physical manifestations, N. Morozovska, V. V. Khist, M. D. Glinchuk, V. Gopalan, E. A. Eliseev, Phys. Rev. B. 92, 054421 (2015).
  9. Mn2FeWO6: a new Ni3TeO6-type polar and magnetic oxide, M-R. Li, M. Croft, P. W. Stephens, M. Ye, D. Vanderbilt, M. Retuerto, Z. Deng, C. P. Grams, J. Hemberger, J. Hadermann, W-M. Li, C-Q. Jin, F. O. Saouma, J. I. Jang, H. Akamatsu, V. Gopalan, D. Walker, M. Greenblatt, Advanced Materials28, 2098, (2015).

2014

  1. Mid-infrared spectroscopic imaging enabled by an array of Ge-filled waveguides in a microstructured optical fiber probe, Ji, B.G. Zhang, M. Krishnamurthi, J. Badding, V. Gopalan, Optics Express, 22, 28459-28466 (2014).
  2. Piezoelectric enhancement of (PbTiO3)m/(BaTiO3)n ferroelectric superlattices through domain engineering, Hong, P. P. Wu, Y. L. Li, V. Gopalan, C. B. Eom, D. G. Schlom, L. Q. Chen, Phys. Rev. B. 19, 174111 (2014).
  3. Monoclinic phase arising across thermal inter-ferroelectric phase transitions, Yijia Gu, Fei Xue, Shiming Lei, Tom T. A. Lummen, Jianjun Wang, Venkatraman Gopalan, and Long-Qing Chen, Rev. B., 90, 024104 (2014).
  4. Inversion symmetry breaking by oxygen octahedral rotations in Ruddlesden-Popper NaRTiO4 family Akamatsu, K. Fujita, T. Kuge, A. S. Gupta, A. Togo, S. Lei, F. Xue, G. Stone, J. M. Rondinelli, L. Q. Chen, I. Tanaka, V. Gopalan, K. Tanaka, Phys. Rev. Lett. 112, 187602 (2014).
  5. Crystallographic data of double antisymmetry space groups, M. Huang, B. K. VanLeeuwen, D. B. Litvin, V. Gopalan, Acta Crystallographica A, A70, 373-381 (2014).
  6. Flexoelectricity and ferroelectric domain wall structures: Phase-field modeling and DFT calculations, Yijia Gu, Menglei Li, Anna N. Morozovska, Yi Wang, Eugene A. Eliseev, V. Gopalan, and Long-Qing Chen, Rev. B. 89, 174111 (2014).
  7. Thermotropic phase boundaries in classic ferroelectrics, T.A. Lummen, Yijia Gu, Jianjun Wang, Shiming Lei, Amit Kumar, Andrew T. Barnes, Eftihia Barnes, Sava Denev, Alex Belianinov, Martin Holt, Anna N. Morozovska, Sergei V. Kalinin, Long-Qing Chen and Venkatraman Gopalan, Nat. Commun. 5, 3172 (2014).
  8. Electric-field induced ferromagnetic phase in paraelectric antiferromagnets, D. Glinchuk, E. A. Eliseev, L-Q. Chen, V. Gopalan, and A. N. Morozovska, Phys. Rev. B, 89, 014112 (2014).
  9. Elastic strain engineering of ferroic oxides, G. Schlom, L-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, R. Uecker, MRS Bulletin, 39, 118-130 (2014).
  10. Double antisymmetry and rotation reversal space groups, K. VanLeeuwen, V. Gopalan, D. B. Litvin, Acta Crystallographica A, 70, 24-38 (2014).
  11. Reinvestigation of Electric Field Induced Optical Activity in a-Quartz: Application of a Polarimeter with Four Photoelastic Modulators, SenGupta, Oriol Arteaga, Ryan Haislmaier, Bart Kahr, Venkatraman Gopalan, Chirality 26, 430-433 (2014).
  12. Synchronized charged oscillations in correlated electron systems, Shukla, A. Parihar, E. Freeman, H. Paik, G. Stone, V.Narayanan, H. Wen, Z. Cai, R. Engel-Herbert, D.G. Schlom, A. K. Raychowdhury, S. Datta, Scientific Reports, 4, 4964 (2014).
  13. Reply to “Comment on ‘Origin of piezoelectric response under a biased scanning probe microscopy tip across a 180 degree ferroelectric domain wall, S. Lei, E. A. Eliseev, A. N. Morozovska, R. C. Haislmaier, T. T. A. Lummen, W. Cao, S. V. Kalinin, V. Gopalan, Phys. Rev. B, 89, 226102 (2014).

2013

  1. Universal emergence of spatially modulated structures induced by flexoantiferrodistortive coupling in multiferroics, A. Eliseev, S. V. Kalinin, Y. Gu, M. D. Glinchuk, V. Khist, A. Borisevich, V. Gopalan, L. Q. Chen, A. N. Morozovska, Phys. Rev. B. 88, 224105 (2013).
  2. Characterization of full set of material constants of piezoelectric materials based on ultrasonic method and inverse impedance spectroscopy using only one sample, Li, L. Zheng, W. Jiang, R. Sahul, V. Gopalan, W. Cao, J. Appl. Phys., 114, 104505 (2013).
  3. Nanoscale structural evolution of electrically driven insulator to metal transition in vanadium dioxide, Eugene Freeman, Greg Stone, Nikhil Shukla, Hanjong Paik, Jarrett Moyer, Zhonghou Cai, Haidan Wen, Roman Engel-Herbert, Darrell G. Schlom, Venkatraman Gopalan and Suman Datta, Phys. Lett. 103, 263109 (2013).
  4. Low-symmetry monoclinic ferroelectric phase stabilized by oxygen octahedra rotations in strained EuxSr1-xTiO3 thin films, N. Morozovska, Y.J. Gu, V.V. Khist, M.D. Glinchuk, L.Q. Chen, V. Gopalan, and E.A. Eliseev, Physical Review B, 87(13), 232904 (2013).
  5. Structural and Electronic Recovery Pathways of Photoexcited Ultrathin VO2 Film, Haidan Wen, Lu Guo, Eftihia Barnes, June-Hyuk Lee, Donald A. Walko, Richard D. Schaller, Jarrett Moyer, Rajiv Misra, Yuelin Li, Eric M. Dufresne, Peter Schiffer, Darrell G. Schlom, Venkatraman Gopalan, John. W. Freeland, Rev. B., 88, 165424 (2013).
  6. Exploiting Dimensionality and Defect Mitigation to Create Tunable Microwave Dielectrics, Che-Hui Lee, Nathan D. Orloff, Turan Birol, Ye Zhu, Veronica Goian, Ryan Haislmaier, Eftihia Vlahos, Julia A. Mundy, Yuefeng Nie, Michael D. Biegalski, Jingshu Zhang, Margitta Bernhagen, Nicole A. Benedek, Yongsam Kim, Joel D. Brock, Reinhard Uecker, Xiaoxing Xi, Venkatraman Gopalan, Dmitry Nuzhnyy, Stanislav Kamba, David A. Muller, Ichiro Takeuchi, James C. Booth, Craig J. Fennie & Darrell G. Schlom, Nature, 502, 532-536 (2013).
  7. Templated Chemically Deposited Semiconductor Optical Fiber Materials, Sparks, J.R., Sazio, P.J.A., Gopalan, V., Badding, J. V., Annual Reviews of Materials Research, 43, 527-557 (2013).
  8. Quantification of octahedral rotations in strained LaAlO3 films via synchrotron x-ray diffraction, L. Johnson-Wilke, D. Marincel, R. Engel-Herbert, V. Gopalan, S. Zhu, D.G. Schlom, M.P. Warusawithana, A. Hatt, J. Sayre, K.T. Delaney, N.A. Spaldin, C. M. Schleputz, J.-W. Kim, P. Ryan, and S. Trolier-McKinstry Phys. Rev. B, 88, 174101 (2013)
  9. Large nonlinear optical coefficients in pseudo-tetragonal BiFeO3 thin films, C. Haislmaier, N. J. Podraza, S. Denev, A. Melville, D. G. Schlom, V. Gopalan, Appl. Phys. Lett. 103, 031906 (2013).
  10. Silicon p-i-n Junction Fibers, He, R., Day, T.D., Krishnamurthi, M., Sparks, J.R., Sazio, P.J.A., Gopalan, V., and Badding, J. V., Advanced Materials 25, 1461-1467 (2013).
  11. Effect of stoichiometry on the dielectric properties and soft mode behavior of strained epitaxial SrTiO3 thin films on DyScO3 substrates, C-H. Lee, V. Skoromets, S. Lei, D. Biegalski, M. Bernhagen, R. Uecker, X.X. Xi, V.Gopalan, X. Martí, S. Kamba, P. Kužel, and D. G. Schlom, Applied Physics Letters, 102, 082905 (2013).

2012

  1. Polarization and pyroelectricity in antiferrodistortive structures and surfaces induced by a flexoelectric effect: Impact of free charges, Morozovska, E. A. Eliseev, M. D. Glinchuk, L-Q. Chen, S. V. Kalinin, V. Gopalan, Ferroelectrics, 438, 32-44 (2012).
  2. Integration of GHz Bandwidth Semiconductor Devices inside Microstructured Optical Fibers, He, P. J. A. Sazio, N. Healy, A. C. Peacock, M. Krishnamurthi, V. Gopalan, J. V. Badding, Nature Photonics, 6, 174-179 (2012).
  3. Conductivity of twin walls-surface junctions in ferroelastics-Interplay of deformation potential, octahedral rotations, improper ferroelectricity, and flexoelectric coupling, A. Eliseev, A. N. Morozovska, Y. Gu, A. Borisevich, L-Q. Chen, V. Gopalan, S. V. Kalinin, Phys. Rev. B. 86, 085416 (2012).
  4. Orthorhombic BiFeO3 Multiferroic Thin Films, C. Yang, Q. He, S. J. Suresha, C. Y. Kuo, R. Haislmaier, G. Sheng, C. Adamo, H. J. Liu, C. W. Liang, C. Y. Peng, H. J. Lin, Z. Hu, L. Chang, C. T. Chen, L. H. Tjeng, E. Arenholz, D. G. Schlom, V. Gopalan, L. Q. Chen, Y. H. Chu, and R. Ramesh, Phys. Rev. Lett., 109, 247606  (2012).
  5. A magnifying fiberscope for infrared imaging with sub-wavelength Ge/ZnSe pixel waveguides, Mahesh Krishnamurthi, Eftihia Barnes, Justin Sparks, Rongrui He, Neil Baril, Pier Sazio, John Badding, and V. Gopalan, Applied Physics Lett. 101, 021108 (2012).
  6. Surface polar states and pyroelectricity in ferroelastics induced by flexo-roto field, N. Morozovska, E. A. Eliseev, S. V. Kalinin, L-Q. Chen, V. Gopalan, Appl. Phys. Lett. 100, 142902 (2012).
  7. Dipole spring ferroelectrics in superlattice SrTiO3/BaTiO3 thin films exhibiting constricted hysteresis loops, Wu, X. Ma, Y. Li, V. Gopalan, L-Q. Chen, Appl. Phys. Lett. 100, 092905 (2012).
  8. A magnifying fiberscope for infrared imaging with sub-wavelength pixel size, Krishnamurthi, J. Sparks, R. He, N. Baril, P. A. Sazio, J. V. Badding, V. Gopalan, Optics Express, 20, 4168-4175 (2012).
  9. Investigating electric field control of magnetism, B. Holcomb, S. Polisetty, A. Fraile-Rodriguez, V. Gopalan, R. Ramesh, review article International J. Modern Physics B 26, 1230004-1/12 (2012).
  10. A Phenomenological Thermodynamic Potential for CaTiO3 Single Crystal, Yijia Gu, Karin Rabe, Eric Bousquet, Venkatraman Gopalan, and Long-Qing Chen, Rev. B, 85, 064117 (2012).
  11. Interfacial Polarization and pyroelectricity in antiferrodistortive structures induced by a flexoelectric effect and rotostriction, Morozovska, E. A. Eliseev, M. D. Glinchuk, V. Gopalan, Phys. Rev. B, 85, 094107 (2012).
  12. Confined High Pressure Chemical Deposition of Amorphous Hydrogenated Silicon, Neil F. Baril, Rongrui He, Todd D. Day, Justin R. Sparks, Banafsheh Keshavarzi, Mahesh Krishnamurthi, Ali Borhan, Venkatraman Gopalan, Anna C. Peacock, Noel Healy, Pier J.A. Sazio, John V. Badding, Am. Chem. Soc. 134, 19-22 (2012).

2011

  1. Frequency shift of Raman modes due to an applied electric field and domain inversion in LiNbO3, Stone, B. Knorr, V. Gopalan, V. Dierolf, Physical Rev. B84, 134303 (2011).
  2. Rotation-reversal symmetries in crystals and handed structures, Gopalan, D. B. Litvin, Nature Materials, 10, 376 (2011).
  3. Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain, Harrington, J. Zhai, S. A. Denev, V. Gopalan, H. Wang, Z. Bi, S. A. T. Redfern, S-H. Baek, C.W. Bark, C-B. Eom, Q. X. Jia, M. E. Vickers, J. L. MacManus-Driscoll, Nature Nanotechnology 6, 491-495 (2011).
  4. Probing Ferroelectrics using Optical Second Harmonic Generation, A. Denev, T. T. A. Lummen, E. Vlahos, V. Gopalan, J. Amer. Cer. Soc. 94[9], 2699-2727 (2011).
  5. Structure and energetics of 180° domain walls in PbTiO3 by density functional theory, K. Behera, C-W. Lee, D. Lee, A. N. Morozovska, S. B. Sinnott, A. Asthagiri, V. Gopalan, and S. R. Phillpot, J. Phys. Condensed Matter, 23, 175902-1/12 (2011).
  6. High conductivity of charged domain walls in n-type uniaxial ferroelectric semiconductors, Eliseev, A. M. Morozovska, S. V. Svechnikov, V. Gopalan, V. Ya. Shur, Phys. Rev. B, 83, 235313-1/8 (2011).
  7. Low loss ZnSe Optical Fiber Waveguides, R. Sparks, R. He, Noel Healy, M. Krishnamurthi, A. C. Peacock, P. J.A. Sazio, V. Gopalan, and J. V. Badding, Advanced Materials, 23, 1647-1651 (2011).
  8. Characterization of the second-harmonic response of second-order nonlinear probes, Li, P. Edwards, Z. Zhang, Y. Xu, V. Gopalan, Z. Liu, J. Opt. Soc. Am. B, 28, 2844-2847(2011).

2010

  1. Interactions of Defects and Domain Walls in LiNbO3 – Insights from Simulation, Xu, D. W. Lee, S. B. Sinnott, V. Gopalan, V. Dierolf and S. R. Phillpot, IOP Conf. Ser.: Mater. Sci. Eng. 15 012003 (2010).
  2. Chromatic second harmonic generation, Yang, K. Shi, H. Li, Q. Xu, V. Gopalan, Z. Liu, Optics Express, 18, 23837-23843 (2010).
  3. Shape of domains in LiNbO3 and LiTaO3 from defect/domain wall interactions, Donghwa Lee (이동화), Haixuan Xu (徐海譞), Volkmar Dierolf, Venkatraman Gopalan, and Simon R. Phillpot, Phys. Lett. 98, 092903 (2010).
  4. Mid-infrared transmission properties of amorphous germanium optical fibers, Mehta, M. Krishnamurthi, N. Healy, N. F. Baril, J. Sparks, P. J. A. Sazio, V. Gopalan, J. V. Badding, A. C. Peacock, Applied Physics Lett. 97, 071117 (2010).
  5. Stability and charge transfer levels of extrinsic defects in LiNbO3, Xu (徐海譞), A. Chernatynskiy, D. Lee (이동화), S. B. Sinnott, V. Gopalan, V. Dierolf, and S. R. Phillpot, Phys. Rev. B (2010), 82 184109 (2010).
  6. Phase diagram and domain splitting in thin ferroelectric films with incommensurate phase, N. Morozovska, E.A. Eliseev, JianJun Wang, G.S. Svechnikov, Yu. M. Vysochanskii, V. Gopalan, and Long-Qing Chen, Phys. Rev. B, 81, 195437, (2010).
  7. Correlated polarization switching in the proximity of a 180 degree domain wall, Vasudevarao, A. N. Morozovska, I. Grinberg, S. Bhattacharya, Y. Li, S. Jesse, P. Wu, K. Seal, S. Choudhury, E.A. Eliseev, S. Svechnikov, D. Lee, S. Phillpot, L.Q. Chen, A. M. Rappe, V. Gopalan and S.V. Kalinin, Phys. Rev. B. 82, 024111 (2010).
  8. Optical Properties of quasi-tetragonal BiFeO3 thin films, Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom, and J. L. Musfeldt, Appl. Phys. Lett. 96, 131907 (2010).
  9. Laser improved protein crystallization screening, Yennawar, S. Denev, V. Gopalan, H. Yennawar, Acta Crstallographica F, 66, 969-972 (2010).
  10. Phase-field simulations of phase transitions and domain stabilities in biaxially strained (001) SrTiO3 epitaxial thin films, Sheng, Y. L. Li, J. X. Zhang, S. Choudhury, Q. X. Jia, V. Gopalan, D. G. Schlom, Z. K. Liu, L. Q. Chen, J. Appl. Phys. 108, 084113-1/6 (2010).
  11. Structure and Energetics of ferroelectric domain walls in LiNbO3 from atomic-level simulation, Donghwa Lee (이동화)1, Haixuan Xu (徐海譞)1, Venkatraman Gopalan2, Volkmar Dierolf, V. Gopalan and Simon R. Phillpot, Rev. B. 82, 014104-1/13, (2010).
  12. Creating a Strong Ferroelectric Ferromagnet via Spin-Phonon Coupling, H. Lee, L. Fang, E. Vlahos, X. Ke, Y. W. Jung, L. Fitting Kourkoutis, J.W. Kim, P. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P. C. Hammel, K. M. Rabe, S. Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin & D. G. Schlom, Nature 466, 954 (2010).
  13. Optical multistability in a silicon-core silica-cladding fiber, A. Temnykh, N. F. Baril, Z. Liu, J. V. Badding, V. Gopalan, Optics Express, 18, 5305-5313 (2010).
  14. Probing mixed phases and monoclinic distortion in strained bismuth ferrite films by optical second harmonic generation, Kumar, R. Zeches, S. Denev, N. Podraza, A. Melville, D. G. Schlom, R. Ramesh, V. Gopalan, Appl. Phys. Lett. 97, 112903 (2010).
  15. A modified Landau-Devonshire thermodynamic potential for strontium titanate, Sheng, Y. L. Li, J. X. Zhang, S. Choudhury, Q. X. Jia, V. Gopalan, D. G. Schlom, Z. K. Liu and L. Q. Chen, Appl. Phys. Lett. 96, 232902(2010).
  16. Tunable band gap in Bi(FeMn)O3 films, S. Xu, J. F. Ihlefeld, J. H. Lee, O.K. Ezekoye, E. Vlahos, R. Ramesh, V. Gopalan, X.Q. Pan, D. G. Schlom, and J.L. Musfeldt, Appl. Phys. Lett. 96, 192901 (2010).
  17. Ferroelectricity in strain-free SrTiO3 films, W. Jang, A. Kumar, S. Denev, M. D. Biegalski, P. Maksymovych, C. T. Nelson, C. M. Folkman, S. H. Baek, N. Balke, D.A. Tenne, D. G. Schlom, L. Q. Chen, X. Q. Pan, S. V. Kalinin, V. Gopalan, and C. B. Eom, Phys. Rev. Lett. 104, 197601(2010).
  18. High Pressure chemical deposition for void free filling of extreme aspect ratio templates, F. Baril, B. Keshavarzi, J. R. Sparks, Mahesh Krishnamurthi, I. Temnykh, P.J.A. Sazio, Ali Borhan, V. Gopalan, and J. V. Badding, Advanced Materials, 22, 4605-4611(2010).
  19. Structure and diffusion of intrinsic defect complexes in LiNbO3 from density functional theory calculations, Xu, D. Lee, J. He, S. B. Sinnott, V. Dierolf, V. Gopalan, S. R. Phillpot, Journal of physics, Condensed Matter 22, 135002-1/7 (2010).
  20. Optical properties of tetragonal BiFeO3 thin films, Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom, and J. L. Musfeldt, Appl. Phys. Lett. 96, 131907-1/4 (2010).
  21. Co-Casting and Optical Characteristics of Transparent Segmented Composite Er:YAG Laser Ceramics, R. Kupp, G. L. Messing, J. M. Anderson, V. Gopalan, J. Q. Dumm, C. Kraisinger, N. Ter-Gabrielyan, L. D. Merkle, M. Dubinskii, V. K. Castillo-Simonaitis, G. J. Quarles, J. Materials Research 25, 476-483 (2010).

2009

  1. Thermodynamics of nanodomain formation and breakdown in Scanning Probe Microscopy: Landau-Ginzburg-Devonshire approach, N. Morozovska, Eugene A. Eliseev, Yulan Li , S. V. Svechnikov, P. Maksymovych, V. Gopalan, L-Q. Chen and S. V. Kalinin, Phys. Rev. B , 80, 214110 (2009).
  2. Electro-Optic Laser Beam Shaping by Patterned Ferroelectric domains, Mahesh Krishnamurthi, Peng Li, Aseem Singh, J. G. Thomas, T. M. Lehecka, Z. Liu and V. Gopalan, Lett.95, 202902-1/3 (2009).
  3. A strain-driven morphotropic phase boundary in BiFeO3, J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, C. H. Yang, A. Kumar, A. Melville, J. H. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, D. G. Schlom, N. A. Spaldin, L. W. Martin, R. Ramesh, Science 326, 977 (2009).
  4. Phase Transition in Weberite-type Gd3NbO7 Cai, S. Denev, V. Gopalan, and J. C. Nino, J. Amer. Cer. Soc. 93, 875-880 (2009).
  5. Structure and Energetics of Er defects in LiNbO3 from first principles and thermodynamic calculations, Xu, D. Lee, S. B. Sinnott, V. Gopalan, V. Dierolf, S. R. Phillpot, Phys. Rev. B, 80, 144104-1/9 (2009).
  6. Spin-Charge-Lattice Coupling through Multi-Magnon Excitations in Multiferroic BiFeO3, O. Ramirez, A. Kumar, S. A. Denev, Y. H. Chu, J. Seidel, L. Martin, S-Y. Yang, R. C. Rai, X. Xu, J. F. Ihlefeld, N. Podraza, E. Saiz, S. Lee, J. Klug, S. W. Cheong, M.J. Bedzyk, O. Auciello, J. L. Musfeldt, D. G. Schlom, R. Ramesh, J. Orenstein and V. Gopalan, Appl. Phys. Lett. 94, 161905-1/3 (2009).
  7. Mixed Bloch-Néel-Ising Character of 180o Ferroelectric Domain Walls, Donghwa Lee (이동화), Rakesh K. Behera, Pingping Wu, Haixuan Xu (徐海譞), Y. L. Li, Simon R. Phillpot, Susan B. Sinnott, L. Q. Chen, V. Gopalan, Rev. B. Rapid Communications, 80, 060102(R)(2009).
  8. Coexistence of weak ferromagnetism and ferroelectricity in the high pressure LiNbO3-type phase of FeTiO3, Varga, A. Kumar, E. Vlahos, S. Denev, M. Park, S. Hong, T. Sanehira, Y. Wang, C. J. Fennie, S. K. Streiffer, X. Ke, P. Schiffer, V. Gopalan, J. F. Mitchell, Phys. Rev. Lett. 103, 047601 (2009).
  9. Temperature dependent blue second harmonic generation in Ba5Li2Ti2Nb8O30 microcrystals embedded in TeO2 glass-matrix, A Madhar, A. Vasudevarao; V. Gopalan; H.Jain; K.B.R. Varma, Journal of non-crystalline solids, 355, 1517-1520 (2009).
  10. Magnon Sidebands in Bismuth Ferrite Probed by Nonlinear Optical Spectroscopy, O. Ramirez, A. Kumar, S. Denev, N. Podraza, X. S. Xu, R. C. Rai, Y. H. Chu, J. Seidel,  L. Martin, S-Y. Yang, E. Saiz, J. F. Ihlefeld, S. Lee, S. W. Cheong, D. G. Schlom, R. Ramesh, J. Orenstein, J. L. Musfeldt, and V. Gopalan, Phys. Rev. B. 76, 224106 (2009).
  11. Optical Properties and magnetochromism in multiferroic BiFeO3, S. Xu, T. V. Brinzari, S. Lee, Y. H. Chu, L. W. Martin, A. Kumar, S. McGill, R. C. Rai, R. Ramesh, V. Gopalan, S. W. Cheong, J. L. Musfeldt, Phys. Rev. B.79, 134425-1/4 (2009).
  12. Anisotropic ferroelectric properties of SrTiO3 thin films on DyScO3 substrates, D. Biegalski, E. Vlahos, Y. L. Li, L. Q. Chen, V. Gopalan, S. Trolier-Mckinstry, D. G. Schlom, S. K. Streiffer, M. Bernhagen, P. Reiche and R. Uecker, Phys. Rev. B. 79, 224117-1/11(2009).
  13. Stripe vertical domain walls of epitaxial (001) BiFeO3 thin films on orthorhombic TbScO3 substrate, M. Folkman, S.H. Baek, H.W. Jang, C. B. Eom, C. T. Nelson, X.Q. Pan, A. Kumar and V. Gopalan, Appl. Phys. Lett. 94, 254911-1/3(2009).
  14. Surface Effect on Domain Wall Width in Ferroelectrics, A. Eliseev, Anna N. Morozovska, Sergei V. Kalinin, Yulan L. Li, Jie Shen, Maya D. Glinchuk, Long-qing Chen, Venkatraman Gopalan, J. Appl. Phys. 106, 084102 (2009).

2008

  1. The interaction of a 180° ferroelectric domain wall with a biased scanning probe microscopy tip: Geometry and thermodynamics in Ginzburg-Landau-Devonshire theory, N. Morozovska, S. V. Kalinin, E. A. Eliseev, V. Gopalan, S. V. Svechnikov, Phys. Rev. B 78, 124407-1/11(2008).
  2. Stability of defects and defect clusters in LiNbO3 from density functional theory calculations, Xu, D. Lee, J. He, S. B. Sinnott, V. Gopalan, V. Dierolf, S. R. Phillpot, Physical Review B 78, 174103-1/12 (2008).
  3. Solitons and critical breakup fields in lithium niobate type uniaxial ferroelectrics, Bandyopadhyay, P. C. Ray, V. Gopalan, European Physical Journal B, 65, 525–531 (2008).
  4. The Influence of 180 degree ferroelectric domain wall width on the threshold field for wall motion,Choudhury, Y. Li, N. Odagawa, Aravind Vasudevarao, L. Tian, P. Capek, V. Dierolf, A. N. Morozovska, Eugene A. Eliseev, Sergei Kalinin, Long-qing Chen, Venkatraman Gopalan, J. Appl. Phys. 104, 084107-1/7, (2008).
  5. Magnetic color symmetry of lattice rotations in a diamagnetic material, Denev, A. Kumar, M. Biegalski, H. W. Wang, C. M. Folkman, A. Vasudevarao, Y. Han, I. M. Reaney, S. T. Mckinstry, C. B.- Eom, D. G. Schlom, V. Gopalan,  Phys. Rev. Lett., 100, 257601-1/4 (2008).
  6. Nanoscale polarization profile across a 180° ferroelectric domain wall extracted by quantitative piezoelectric force microscopy, Tian, A. Vasudevarao, A. N. Morozovska, E. A. Eliseev, S. Kalinin, V. Gopalan, J. Appl. Phys.  104, 074110-1/10  (2008).
  7. Effect of the intrinsic width on the piezoelectric force microscopy of a single ferroelectric domain wall, N. Morozovska, E. A. Eliseev, G. S. Svechnikov, V. Gopalan, S. Kalinin,  J. Appl. Phys. 103, 124110 (2008).
  8. Linear and Nonlinear Optical Properties of multifunctional PbVO3, Kumar, S. Denev, L. W. Martin, R. Ramesh, and V. Gopalan  Appl. Phys. Lett. 92, 231915 (2008).
  9. Design and simulation of planar electro-optic switches in ferroelectrics, Krishnamurthi, L. Tian and V. Gopalan,  93, 052912, Appl. Phys. Lett. (2008).
  10. Linear and Nonlinear Optical Properties of BiFeO3, Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y.-H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Schubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, Appl. Phys. Lett. 92, 121915-1/3 (2008).
  11. Polarization rotation transitions in anisotropically strained SrTiO­3thin films, Vasudevarao, Sava Denev, Michael D. Biegalski, Yulan Li, Long-Qing Chen, Susan Trolier-McKinstry, Darrell G. Schlom, and Venkatraman Gopalan  Appl. Phys. Lett. 92, 12195-1/3 (2008).
  12. Sintering and Grain Growth in SiO2 doped Nd:YAG, Kochawattana, A. Stevenson, E. Kupp, Sang-Ho Lee, M. Ramirez, V. Gopalan, and G. L. Messing,  J. Eur. Cer. Soc. 28, 1527–1534 (2008).
  13. Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials,  M. Ramirez, J. Wisdom, Z. Liu, R. L. Byer, G. L. Messing, V. Gopalan,  Optics Express, 16, 5965-5973 (2008).
  14. Two-phonon coupling to the antiferromagnetic phase transition in multiferoic BiFeO3, M.  Ramirez, M. Krishnamurthy, S. Denev, A. Kumar, S.-Y. Yang, Y. H. Chu, E. Saiz, A. P. Pyatakov, A. Bush, D. Viehland, J. Orenstein, R. Ramesh, V. Gopalan,  Appl. Phys. Lett. 92, 022511-3 (2008). https://doi.org/10.1063/1.2829681
  15. Development of optical nonlinearity, high dielectric constant, and ferromagnetic behavior in a silicate glass nanocomposite by suitable heat treatment, S. Basu, V. Gopalan, H. Jain, D. Chakravorty,  J. Non-Crystalline Solids, 354, 3278-3283 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.02.015

2007

  1. Natural focusing of rays from ferroelectric lithium niobate wafers, Durbin, T. Jach, S. Kim, V. Gopalan,  Appl. Phys. Lett. 91, 142909 (2007).
  2. Amorphous silicon-filled microstructures optical fibers for in-fiber light modulation, D. Won, M. O. Ramirez, V. Gopalan, H. Kang, N. F. Baril, J. Calkins, P. J. A. Sazio, J. V. Badding, V. Gopalan,  Appl. Phys. Lett. 91, 161112-1/3(2007). https://doi.org/10.1063/1.2790079
  3. Raman studies of ferroelectric domain walls in lithium tantalate and niobate, P. Capek, G. Stone, V. Dierolf, C. Althouse, V. Gopalan,  Phys. Stat. Sol. 4, 830-833 (2007). https://doi.org/10.1002/pssc.200673720
  4.  Adsorption-controlled molecular-beam epitaxial growth of BiFeO3, J. F. Ihlefeld, A. Kumar, V. Gopalan, D. G. Schlom, Y. B. Chen, X. Q. Pan, T. Heeg, J. Schubert, X. Ke, P. Schiffer, J. Orenstein, L. W. Martin, Y. H. Chu, and R. Ramesh,  Appl. Phys. Lett. 91, 071922 (2007).
  5. Quantitative determination of the tip parameters in piezoresponse force microscopy, S. V. Kalinin, S. Jesse, B. J. Rodriguez, E. A. Eliseev, V. Gopalan, A. N. Morozovska,  Appl. Phys. Lett. 90, 212905 (2007).
  6. 2-D dynamic focusing of laser light by ferroelectrics based electro-optic domain lenses, M. Krishnamurthi, S. Denev, L. Tian, T. Lehecka, J. Thomas, V. Gopalan,  Appl. Phys. Lett. 90, 201106-1/3 (2007).
  7. Integrated Optoelectronics in an Optical Fiber, J. V. Badding, A. Amezcua Correa, T.J. Scheidemantel, C.E. Finlayson, N.F. Baril, D.J. Won, H. Fang, B. Jackson, A. Borhan and V. Gopalan,  Proceedings of SPIE-The International Society for Optical Engineering, volume 6475, 64750N (2007)
  8. Microstructured Optical Fibers as New Nanotemplates for High Pressure CVD, N. F. Baril, J.V. Badding, V. Gopalan, P.J. Sazio, T.J. Scheidemantel, B.R. Jackson, D.-J. Won, A. Amezcua Correa and C. Finlayson,  Materials Research Society Symposium Proceedings, (2007)

2006

  1. Multiferroic Domain Dynamics in strained SrTiO3, A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y.L. Li, C. Fennie, C-J Eklund, Q.X. Jia, R. Uecker, P. Reiche, K. Rabe, L.Q. Chen,  D.G. Schlom and V. Gopalan,  Phys. Rev Lett. 97, 257602 (2006).
  2. Microstructured optical fibers as high-pressure microfluidic reactors, J.A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson,D-J. Won, F. Zhang, R. Margine, V. Gopalan,V. H. Crespi, and J. V. Badding, Science, 311, 1583, (2006).
  3. Dynamical systems analysis for polarization in ferroelectrics, A. K. Bandhyopadhyay, P. C. Ray, V. Gopalan,  Journal of Applied Physics, 100, 114106-1 to 11410-9 (2006).
  4. An approach to the Klein–Gordon equation for a dynamic study in ferroelectric materials, A. K. Bandhyopadhyay, P. C. Ray, V. Gopalan, Journal of Physics Condensed Matter, 18, 4093-4099 (2006).
  5. c-axis oriented epitaxial BaTiO3 films on (001) Si, V. Vaithyanathan, J. Lettieri, W. Tian, A. Kochhar, H. Ma, A. Sharan, A. Vasudevarao, V. Gopalan, Y. Li, L. Q. Chen, P. Zschack, J. C. Woicik, J. Levy, and D. G. Schlom,  J. Appl. Phys. 100, 024108-1/9 (2006).
  6. Phase transitions and domain structures in strained pseudocubic (001) SrTiO3 thin films, L. Li, S. Choudhury, J.H. Haeni, M.D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. Trolier-McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen,  Physical Review B, 73, 184112-1-to-13 (2006).
  7. Building semiconductor structures in optical fiber, J. V. Badding, V. Gopalan, P. J. A. Sazio,  Photonics Spectra, 40, n 8, p 80-8, Aug. (2006).
  8. Spatial mapping of Fluorescence and Raman spectra across grain boundaries in transparent Nd-YAG ceramic laser materials, S-J. Lee, J. Stitt, W. White, G. Messing, V. Gopalan,  Proceedings of the SPIE, Solid State Lasers XV:Technology and Devices, Editors: Hanna J. Hoffman, Ramesh K. Shori, V 6100, page 610011-1/11-8, San Jose CA, Jan (2006).https://doi.org/10.1117/12.642405
  9. Xray synchrotoron imaging of ferroelectric domain walls, T. Jach, V. Gopalan,  Ceramic Transactions 196, 119-123 (2006).

2005

  1. Hybrid Electro-optic and Piezoelectric Laser Beam Steering in Two Dimensions, D. A. Scrymgeour, B. Koc, L. Tian, M. W. Gentzel, K. Uchino and V. Gopalan,  IEEE Journal of Lightwave Technology, 23, 2772-2777 (2005).
  2. Tunable microphotonic devices in ferroelectrics, D. A. Scrymgeour , V. Gopalan , K. Gahagan, American Ceramic Society Bulletin 84 (5), 14-17 (2005).
  3. Numerical study of the light-beam propagation and superprism effect inside two-dimensional hexagonal photonic crystals, N. Malkova, D. Scrymgeour, and V. Gopalan,  Physical Review B, 72, 045144 (2005).
  4. Nanoscale Piezoelectric response at a single ferroelectric Domain wall, D. Scrymgeour, V. Gopalan,  Phys. Rev. B 72, 024103 (2005).
  5. Real-time study of domain dynamics in Sr0.61Ba0.39Nb2O6, L. Tian, D. A. Scrymgeour, V. Gopalan,  J. Appl. Physics, 97, 114111-1(2005).
  6. Phased-Array Electro-Optic Steering of Large Aperture Laser Beams using Ferroelectrics, D. A. Scrymgeour, L. Tian, V. Gopalan, D. Chauvin, K. A. Schepler,  Applied Physics Letters, 86, 211113-1-3 (2005).
  7. Phenomenological theory of a Single Domain Wall in Uniaxial Trigonal Ferroelectrics: Lithium Niobate and Lithium Tantalate, D. A. Scrymgeour, V. Gopalan,  A. Itagi, A. Saxena, P. Swart,  Phys. Rev. B 71, 184110-1/13 (2005).
  8. Optical index profile at an antiparallel ferroelectric domain wall in lithium niobate, S. Kim, V. Gopalan,  Materials Science and Engineering, B Solid State Materials for Advanced Technologies, 120, 91-94 (2005).
  9. Ultraviolet laser-induced sub-micron periodic domain formation in congruent undoped lithium niobate crystals, C. L. Sones, C.E. Valdivia, J.G. Scott, S. Mailis, R.W. Eason, D.A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel,  Applied Physics B, 80, 341(2005).
  10. Nanoscale surface domain formation on the + z face of lithium niobate by pulsed UV laser illumination, C. E. Valdivia, C.L. Sones, J.G. Scott, S. Mailis, R.W. Eason, D.A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, Applied Physics Letters, 86, 022906 (2005).
  11. Fabrication of extreme aspect ratio wires within photonic crystal fibers, Badding, J. V., P. J. A. Sazio, A. Amezcua Correa, T. J. Scheidemantel, C. E. Finlayson, N. F. Baril, D. J. Won, H. Fang, B. Jackson, A. Borhan and V. Gopalan.  Proceedings of SPIE-The International Society for Optical Engineering 6005: 111-119 (2005).
  12. Comparison of the domain reversal and electro-optic properties of congruent and stoichiometric lithium tantalate, L. Tian, V. Gopalan,  Proceedings of the SPIE, Integrated Optics: Devices, Materials, and Technologies IX, Y. Sidorkin, C. A. Wächter, Eds. Vol. 5728, p. 278-282, San Jose CA, Jan (2005).

2004

  1. Domain reversal in stoichiometric lithium tantalate prepared by vapor transport equillibration, L. Tian, V. Gopalan, Applied Physics Letters, 85, 4445–4447 (2004).
  2. Enhancement of ferroelectricity in strained BaTiO3 thin films, J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, C. B. Eom,  Science 306, 1005 (2004).
  3. Electro-optic Coefficients of Lithium Tantalate at Near-IR Wavelengths, J. L. Casson, K. T. Gahagan, D. A. Scrymgeour, R. K. Jain, J. M. Robinson, V. Gopalan (4), R. K. Sander,  Journal of the Optical Society of America, B, 21, 1948-1952 (2004).
  4. Local electromechanical response at a single ferroelectric domain wall, D. A. Scrymgeour, V. Gopalan,  Metallurgical and Materials Transactions, 35A, 2287-90 (2004).
  5. Bismuth Manganite: a multiferroic with a large nonlinear optical response, A. Sharan, J. Lettieri, Y. Jia, W. Tian, X. Pan, D. Schlom, V. Gopalan,  Physical Review B, 60, 214109/1-7 (2004).
  6. Coupled displacive and order-disorder dynamics in LiNbO3 by molecular dynamics simulation, S. Phillpot, V. Gopalan,  Applied Physics Letters, 84, 1916-18 (2004).
  7. Long range strains and the effects of applied fields at 180° ferroelectric domain walls in lithium niobate, T. Jach, S. Kim, V. Gopalan, S. Durbin, D. Bright,  Physical Review B, 69,064113-1/9 (2004).
  8. Processing and properties of high aspect ratio ferroelectric structures, S. N. Bharadwaja, D. J. Won, H. Fang, V. Gopalan, S. Trolier-Mckinstry, L. Saldanha, T. Mayer,  Proceedings, IEEE International Ultrasonics, Ferroelectrics, and Frequency Control, Joint 50th anniversary conference , Montreal, August (2004) pp. 189-192.
  9. Tunable electro-optic microphotonic devices in ferroelectrics, D. A. Scrymgeour, V. Gopalan, K. T. Gahagan,  Proceedings of the SPIE, Active and Passive Optical Components for WDM Communications IV; Achyut K. Dutta, Abdul Ahad S. Awwal, Niloy K. Dutta, Yasutake Ohishi; Eds. Vol. 5595, p. 310-317, October (2004).
  10. Tunable microphotonic devices on ferroelectrics, D. A. Scrymgeour, K. T. Gahagan, V. Gopalan, Proceedings, American Ceramics Society Annual Meeting, Indianapolis, IN, Photonic Materials and Devices symposium, April (2004).
  11. Domain reversal in single crystal strontium barium niobate (Sr 0.61Ba0.39Nb2O6), L. Tian, D. Scrymgeour, V. Gopalan,  Conference on Lasers and Electro-Optics (CLEO), pt. 1, p 2 pp. vol.1 (2004).
  12. Numerical study of the light-beam propagation inside two-dimensional crystals, Malkova, N., Scrymgeour, D., Gopalan, V.,  2004 Digest of the LEOS Summer Topical Meetings: Biophotonics/Optical Interconnects & VLSI Photonics/WGM Microcavities (IEEE Cat. No.04TH8728), p 2 (2004).

2003

  1. Strain-tunable optical valves at T-junction waveguides in photonic crystals, N. Malkova, V. Gopalan, Physical Review B , 68, 245115-1/6 (2003).
  2. Large optical nonlinearities in BiMnO3 thin films, A. Sharan, I. Ahn, C. Chen, R. W. Collins, J. Lettieri, D. Schlom, V. Gopalan,  Applied Physics Letters 83, 5169-71 (2003).
  3. Anomalous electro-optic effect in Sr0.6Ba0.4Nb2O6 single crystals and its application in 2-dimensional laser scanning, L. Tian, A. Sharan, V. Gopalan,  Applied Physics Letters, 83, 4375-77 (2003).
  4. Strain-tunable light transmission through a 90° bend waveguide in a two-dimensional photonic crystal, N. Malkova, S. Kim, and V. Gopalan,  Applied Physics Letters, 83, 1509-11 (2003).
  5. Electro-optic control of superprism effect in photonic crystals,  D. Scrymgeour, N. Malkova, S. Kim, and V. Gopalan, Applied Physics Letters, 82, 3176-78 (2003);
  6. Symmetrical analysis of complex two-dimensional hexagonal photonic crystals, N. Malkova, S. Kim, T. Dilazaro, V. Gopalan,  Physical Review B, 67, 125203-11 (2003).
  7. Jahn-Teller effect in two-dimensional photonic crystals, Malkova, S. Kim, V. Gopalan,  Physical Review B, 68, 045105-10 (2003).
  8. Ferroelectric domain imaging by defect luminescence microscopy, V. Dierolf, S. Sandman, S. Kim, V. Gopalan, K. Polgar,  J. Appl. Physics, 93, 2295-97(2003).
  9. Complex dynamical behavior in oxide ferroelectrics by molecular-dynamics simulation, S. R. Phillpot, M. Sepliarsky, M. G. Stachiotti, V. Gopalan, S. K. Streiffer and R. L. Migoni,  Proceedings, Electrochemical Society Meeting, Orlando, FL, August (2003).
  10. Jahn-Teller effect in photonic crystals, N. Malkova, V. Gopalan,  Proceedings, Materials Research Society Annual Meeting, Boston, MA, Manuscript: 47164, W3.3, December (2003).

2002

  1. Symmetrical analysis of complex photonic bandgap crystals, N. Malkova, S. Kim, V. Gopalan,  Physical Review B, 66, 115113-23 (2002) .https://doi.org/10.1103/PhysRevB.67.125203
  2. Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics, D. A. Scrymgeour, V. Gopalan, K. T. Gahagan, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, F. Kiamilev,  Applied Physics Letters, 81, 3140-42 (2002).
  3. Multi-channel ±1.1kV arbitrary waveform generator for beam steering using ferroelectric device. F. Muhammad, P. Chandramani, J. Ekman, F. Kiamilev, D. Scrymgeour, V. Gopalan, E. Moore, M. Weiler,  IEEE Photonics Technology Lett. 14, 1605-07 (2002).
  4. Near-IR tunable laser using an integrated LiTaO3 electro-optic deflector, J. L. Casson, L. Wang, N. J.C. Libatique, R. K. Jain, D. A. Scrymgeour, V. Gopalan, Kevin T. Gahagan, Applied Optics, 41 6416-19 (2002).
  5. Coercive fields in ferroelectrics: A case study in lithium niobate and lithium tantalate, S. Kim, V. Gopalan, A. Gruverman,  Appl. Phys. Lett, 80, 2740-42 (2002).
  6. On domain wall broadening in ferroelectric lithium niobate and tantalate, S. Kim, B. Steiner, A. Gruverman, V. Gopalan,  Fundamental Physics of Ferroelectrics 2002, Washington DC, Editor: R. E. Cohen, American Institute of Physics, pp. 277-84 (2002).
  7. In-situ probing of domain poling in Bi4Ti3O12 thin films by optical second harmonic generation, Y. Barad, J. Lettieri, C. D. Theis, D. G. Schlom, V. Gopalan,  Integrated Ferroelectrics, 19-24, 44 (2002).
  8. Real-time studies of strains at ferroelectric domain walls under an applied field, T. Jach, S. Kim, S. Durbin, V. Gopalan, D. Bright, Fundamental Physics of Ferroelectrics 2002, Washington DC, Editor: R. E. Cohen, American Institute of Physics, 260-65(2002).
  9. Tunable nonlinear liquid crystal-based photonic crystals, I. C. Khoo, Yana Zhang, A. Diaz, J. Ding, I. B. Divliansky, K. Holliday, T. S. Mayer, V.Crespi, D. Scrymgeour, V. Gopalan,  Proceedings of Liquid Crystals VI –SPIE  International Symposium on Optical Science and Technology, Vol. 4799 pp. 381-82 (2002).

2001

  1. Domain switching and electromechanical properties of pulse poled Pb(Zn1/3Nb2/3)O3-PbTiO3 crystals, H. Yu, V. Gopalan, J. Sindel, C. A. Randall,  J. Appl. Phys. 89, 561-67 (2001).
  2. Probing domain microstructure in ferroelectric Bi4Ti3O12 thin films by optical second harmonic generation, Y. Barad, V. Gopalan, C. D. Theis , J. A. Lettieri , J. C. Jiang, X. Q. Pan, Darrell G. Schlom,  J. Appl. Phys. 89, 1387-92 (2001).
  3. Piezoelectric strain-tunable photonic crystals, S. Kim, V. Gopalan,  Appl. Phys. lett. 78, 3015-17 (2001).
  4. Integrated high power electro-optic lens and large-angle deflector,  K. T. Gahagan, David A. Scrymgeour, Joanna L. Casson, J. M. Robinson, V. Gopalan, Appl. Opt. 31, 5638-42 (2001).
  5. A large angle electro-optic scanner on LiTaO3 fabricated by in-situ monitoring of ferroelectric domain microengineering, D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan , J. M. Robinson , Q. X. Jia, T. E. Mitchell,  Appl. Optics. Vol. 40, 6236-41, (2001).
  6. Domain reversal and non-stoichiometry in LiTaO3, S. Kim, V. Gopalan, K. Kitamura, Y. Furukawa,  J. Appl. Phys. , 90, 2949 (2001).
  7. Domain rearrangement in Bi4Ti3O12 thin films studied by in-situ optical second harmonic generation, Y. Barad, J. Lettieri, C. D. Theis, D. G. Schlom, V. Gopalan,  J. Appl. Phys. 90, 3497-03 (2001).
  8. Ultrathin slices of domain-patterned lithium niobate by crystal ion slicing, D. A. Scrymgeour, T. Haynes, M. Levy, V. Gopalan,  Materials Research Society Proceeding,Vol 681E, I6.3, Spring (2001).
  9. Crystal ion slicing of domain micro-engineered electro-optic devices on lithium niobate, D. A. Scrymgeour, V. Gopalan, T. E. Haynes,  Integrated Ferroelectrics, 41, 35[1687]-42[1674] (2001).
  10. Compact multi-channel 2kV arbitrary waveform generator for ferroelectric device arrays, F. Muhammad, P. Chandramani, J. Ekman, F. Kiamilev, V. Gopalan, E. Moore, M. Weiler,  in 2001 IEEE/LEOS Annual Meeting Conf. Proc., vol. 2, pp. 818-19, (2001).

2000

  1. Ferroelectric domain reversal in congruent LiTaO3 at elevated temperatures, C. Battle, S. Kim, V. Gopalan, K. Borkacy, M. C. Gupta,  Appl. Phys Lett., 76, 2436-38 (2000).
  2. Experimental study of internal fields and movement of single ferroelectric domain walls, T. J.Yang, V. Gopalan, P. J. Swart, P; U. Mohideen,  Journal of the Physics and Chemistry of Solids, 61, 275-82 (2000).
  3. Direct X-ray synchrotron imaging of strains at 180 deg domain walls in congruent LiNbO3 and LiTaO3 crystals, S. Kim, B. Steiner, V. Gopalan,  Appl. Phys. Lett., 77, 2051-53 (2000).
  4. Domain reversal and wall structure of 180° ferroelectric domains in LiTaO3 crystals, V. Gopalan, K. Kitamura, Y. Furukawa, Fundamental Physics of Ferroelectrics 2000, Aspen Center for Physics, Winter Workshop, Editor: R. E. Cohen, p 183-190,  American Institute of Physics Iss. no.535, pp. 183-90; (2000).
  5. Real-time video study of domain microengineering in ferroelectric LiNbO3 and LiTaO3 for integrated optics, V. Gopalan, S. Kim, K. Kitamura, Y. Furukawa, Optical Society of America, Technical Digest Series,  Conference on Lasers and Electro-Optics, p. 210-12 (2000).
  6. Domain switching performance of stoichiometric LiTaO3 for bulk quasi-phase matching devices, K. Kitamura, Y. Furukawa, S. Takekawa,  T.Hatanaka, H. Ito, V. Gopalan(4), H. Injeyan, U. Keller, C. Marshall, OSA Trends in Optics and Photonics. Advanced Solid State Lasers. Vol. 34, Proceedings. Opt. Soc. America, Washington, DC, USA. pp. 321-23; (2000).
  7. Integrated high power electro-optic lens/scanner for space-based platforms, K. T. Gahagan, J. L. Casson, V. Gopalan, D. A. Scrymgeour, and J. M. Robinson, SPIE – Proceeding of the 45th Annual Meeting,: Photonics for Space Env., 4134, 133-37(2000), San Diego, CA (Aug 2000).

1999

  1. Observation of mobility study of single 180o domain wall in LiTaO3, J. Yang, U. Mohideen, V. Gopalan, P. J. Swart,  Ferroelectrics, 222 (1-4), 609-13 (1999).
  2. In-situ video observation of 180° domain kinetics in congruent LiNbO3 crystals, V. Gopalan, Q. X. Jia, T. E. Mitchell, Appl. Phys. Lett., 75, 16-18 (1999).
  3. Mobility of 180° domain walls in congruent LiTaO3 measured using in-situ electro-optic imaging microscopy,  V. Gopalan, S. S. A. Gerstl, A. Itagi, Q. X. Jia, T. E. Mitchell, T. E. Schlesinger, D. D. Stancil, J. Appl. Phys. 86, 1638-46 (1999).
  4. In-situ video observation of kinetics of 180° domains in congruent LiTaO3 crystals, V. Gopalan, T. E. Mitchell,  J. Appl. Phys., 85, 2304-11 (1999).
  5. Switching kinetics of 180° domains in congruent LiNbO3 and LiTaO3 crystals, V. Gopalan, T. E. Mitchell, K. E. Sickafus,  Solid State Communications, 109, 111-17 (1999).
  6. Direct observation of pinning and bowing of a single ferroelectric domain wall, T. J. Yang, U. Mohideen, V. Gopalan, P. Swart,  Phys. Rev. Lett. 82, 4106-09 (1999).
  7. Integrated Electro-optic lens/scanner in LiTaO3 single crystal, K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell,  Applied Optics, 38, 1186-90 (1999).
  8. Shape-optimized electro-optic beam scanners: Experiment, C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, IEEE Photonic Technol. Lett. 11, 66-8 (1999).
  9. Integrated optical device with second-harmonic generator, electrooptic lens, and electrooptic scanner in LiTaO3, Y. Chiu, V. Gopalan, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, W. P. Risk,  J. Lightwave Technol. 17, 462-65 (1999).
  10. Integration of electro-optic lenses and scanners on ferroelectric LiTaO3, V. Gopalan, K. T. Gahagan, M. Kawas, Q. X. Jia, J. M. Robinson, T. E. Mitchell, T. E. Schlesinger, D. D. Stancil, Integrated Ferroelectrics, 25, 31-6 (1999).
  11. Ferroelectric domain kinetics in congruent LiTaO3, Gopalan, S. Gerstl , A. Itagi, , P. Swart, Q. X. Jia, T. E. Mitchell, T. E. Schlesinger, D. D. Stancil,  Integrated Ferroelectrics, 27, 137-46 (1999).
  12. Stoichiometric LiNbO3 as a new nonlinear material for bulk quasi-phase matching, Y. Furukawa, K. Kitamura, V. Gopalan, T. E. Mitchell, G. Foulton, A. Alexandrovski, R. K. Route(4), and M. M. Fejer,  Optical Society of America, Technical Digest Series, Conference on Lasers and Electro-Optics, p. 167-68 (1999).
  13. Fabrication and characterization of high-speed integrated electro-optic lens and scanner devices, K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, and D. D. Stancil,  1999 Proceedings of SPIE, vol. 3620, 374-79 (1999).

1998

  1. The role of stoichiometry in 180o domain switching in LiNbO3 crystals, V. Gopalan, T. E. Mitchell, K. Kitamura, N. Furukawa,  Appl. Phys. Lett. 72, 1981-83 (1998).
  2. Wall velocities, switching times and stabilization mechanism of 180o domains in congruent LiTaO3 crystals, V. Gopalan, T. E. Mitchell,  J. Appl. Phys. 83, 941-54 (1998).
  3. Crystal growth and low coercive field 180 o domain switching characteristics of stoichiometric LiTaO3, K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, T. E. Mitchell,  Appl. Phys. Lett., 73, 3073-75 (1998).
  4. Radiation effects in corundum structure derivatives, N. Mitchell, R. Devanathan, N. Yu, K. E. Sickafus, C. J. Wetteland, V. Gopalan, M. A. Nastasi, K. J. McClellan,  Nuclear Instruments and Methods in Physics Res. B 141, 461-66 (1998).
  5. Real-time study of kinetics of 180° domains in congruent LiTaO3 under an external field, V. Gopalan, T. E. Mitchell, K. E. Sickafus, Q. X. Jia, Integrated Ferroelectrics, 22, 405-9 (1998).
  6. Feroelectrics as a versatile solid state platform for integrated optics, V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil,  Integrated Ferroelectrics, 22, 465-71 (1998).

1997

  1. Electro-optic lens stack on LiTaO3  crystals, M. Kawas, V. Gopalan, T. E. Schlesinger, D. D. Stancil,  J. Lighwave Technol. 15, 1716-19 (1997).
  2. In-situ X-ray diffraction study of phase transitions in epitaxial KNbO3 thin films, V. Gopalan, R. Raj,  Ferroelectrics 200, Numbers 1-4 pp. 343-51(1997).
  3. Origin and characteristics of internal fields in LiNbO3 crystals, V. Gopalan, and M. C. Gupta,  Ferroelectrics 198, 1-4 pp. 49-59 (1997)
  4. Electric field induced domain rearrangement in potassium niobate thin films studied by in-situ second harmonic generation, V. Gopalan and R. Raj,  J. Appl. Phys, 81, 865-75 (1997).
  5. Domain wall pinning by grain boundaries in epitaxial KNbO3 thin films studied by in-situ second harmonic generation, Gopalan and R. Raj, Ferroelectric Thin Films VI, Proceedings, Materials Research Society, Boston, 493, p. 75-9, December (1997).

1996

  1. Observation of internal fields in Z-cut LiTaO3 crystals: origin and time-temperature dependence, V. Gopalan and M. C. Gupta,  Appl. Phys. Lett., 68, 888-90 (1996).
  2. Domain structure and phase transitions in KNbO3 thin films observed by in-situ second harmonic generation, V. Gopalan and R. Raj,  Appl. Phys. Lett., 68, 1323-25 (1996).
  3. Origin of internal fields and visualization of 180° domains in congruent LiTaO3 crystals, V. Gopalan, and M. C. Gupta,  J. Appl. Phys. 80, 6099-106 (1996).
  4. Domain structure-second harmonic generation correlation in potassium niobate thin films on strontium titanate substrates, V. Gopalan and R. Raj, J. Am. Cer. Soc, 79, 3289-96 (1996).
  5. Internal fields in LiTaO3 single crystals, V. Gopalan and M. C. Gupta,  SPIE Proccedings, Vol. 2700, 28-33 (1996).
  6. Periodic domain inversion in Z-cut LiTaO3 by electron-beam scanning assisted by internal field within the crystal, V. Gopalan and M. C. Gupta, SPIE Proceedings, vol. 2700, 196-202 (1996).

1995

  1. Structure-optical property correlation of KNbO3 thin films deposited on MgO (100) using SrTiO3 transition  layers, V. Gopalan and R. Raj,   J. Am. Cer. Soc., 78, 1825-33 (1995).

1994

  1. Orientation control of KNbOthin films deposited by laser ablation on single crystal MgO substrates using SrTiO3 transition layers, V. Gopalan, H. Xie, W-Y. Hsu and R. Raj,  Ferroelectrics, 152, 55-60 (1994).

1992

  1. Effect of proton exchange on the non-linear optical properties of LiNbO3 and LiTaO3, W-Y. Hsu, C. S. Willand, V. Gopalan, and M. C. Gupta,  Phys. Lett. 61, 2263-65 (1992).
  2. Domain inversion in LiNbO3 using direct electron-beam writing, C. G. Nutt, V. Gopalan and M. C. Gupta, Appl. Phys. Lett. 60, 2828-30 (1992).