Author Archives: John Roe

Metric approach to limit operators

In a couple of posts earlier this year (post I and post II) I started getting to grips with the paper An Affirmative Answer to the Big Question on Limit Operators by Lindner and Seidel. The first of these posts gives some background to limit operator theory and to what the big question is that Lindner and Seidel solved for the case of the group  {\mathbb Z}^n .  Circumstances prevented me continuing the post series, but I suggested that the arguments should work just as well for any group whose underlying metric space has property A (that is, for any exact group).

Now, I am reading the paper A metric approach to limit operators by Jan Spakula and Rufus WIllett, in which they carry out this kind of idea in much greater generality than I had been imagining.   Following the limit operator literature, they don’t simply confine their attention to the Hilbert space as I did; their arguments work on \( \ell^p(X;E) \) with \( 1 < p < \infty \) and coefficients in an auxiliary Banach space \(E\).   What’s more, their notion of limit operator does not even require an underlying group structure (and so the Fredholm theory that they develop will work for all bounded geometry discrete metric spaces that have property A).   In this post I want to explain their generalized definition of “limit operator”, as a preliminary to getting into the analysis proper. Continue reading

A “well known interpolation formula”

In the Atiyah-Bott paper on their Lefschetz theorem for elliptic complexes, they give a very nice elementary example of the Lefschetz theorem for the Dolbeault complex, by considering the automorphism of   {\mathbb C}{\mathbb P}^n given by

\[ [z_0,\ldots, z_n] \mapsto [\gamma_0z_0, \ldots, \gamma_nz_n ] \]

in homogeneous coordinates, where the \(\gamma_i\) are distinct and nonzero complex numbers.  This has \( (n+1) \) simple fixed points and applying the holomorphic Lefschetz theorem gives

\[ 1 = \sum_{i=0}^n \frac{\gamma_i^n}{\prod_{j\neq i} (\gamma_i-\gamma_j)}. \]

This is Example 2 on p. 460 of the second Atiyah-Bott paper.  They go on to describe this as a “well known interpolation formula”. Continue reading

Marc Rieffel 75th birthday proceedings

RieffelI just received a message about the publication of a set of conference proceedings honoring Marc Rieffel’s 75th birthday.  The proceedings originate from a program at the Fields Institute that was held last year (June, 2013).

To quote the web site of the proceedings: This special issue is a tribute to Marc A. Rieffel, marking (approximately) his 75th birthday. It is the outgrowth of a Focus Program on Noncommutative Geometry and Quantum Groups that took place at the Fields Institute for Research in Mathematical Sciences in Toronto, Canada, in June, 2013. Marc Rieffel has been one of the most influential researchers in the world in the areas of noncommutative geometry and quantum groups. He has had over 30 PhD students and over 80 “mathematical descendants”. Among his major contributions were the introduction of Morita equivalence as a fundamental notion in noncommutative geometry and the classification of C*-algebras, the introduction of stable rank as a basic invariant of C*-algebras, the introduction of strict deformation quantization to construct new examples of quantum groups, and the analysis of the metric structure of noncommutative geometries. The papers in this special issue reflect the wide range of his contributions to mathematics as well as the great esteem in which he is held by the world mathematical community.

The proceedings may be downloaded here.

Photo is copyright Mathematische Forschungsintitut Oberwolfach and licensed under Creative Commons.

Artin’s Criterion, Part II

In this post I want to sketch the proof of “Artin’s criterion”, following Ahlfors’ book as referred to in my previous post (and presumably following Artin himself, though I still have not come up with any original reference to him).  The argument generalizes easily to \((n-1)\)-dimensional cycles in an open subset \(\Omega\subseteq {\mathbb R}^n\), but for simplicity I will stick to the planar case.

Continue reading