Category Archives: Research

Higher index theory with change of fundamental group

I gave a talk in our seminar yesterday which arises from trying to understand the paper of Chang, Weinberger and Yu (Chang, Stanley, Shmuel Weinberger, and Guoliang Yu. “Positive Scalar Curvature and a New Index Theorem for Noncompact Manifolds,” 2013) where they use relative index theory in a non \(\pi-\pi\) situation to produce examples of manifolds with strange positive-scalar-curvature properties (e.g., a  non-compact manifold which has an exhaustion by compact manifolds with boundary carrying nice positive-scalar-curvature metrics, but which itself carries no such metric).

I wanted to develop an approach to this kind of index theory that was more accessible (to me) and the talk was a report on my efforts in that direction.  Here are the slides from that talk.

 

Matt Wiersma on exotic group C*-algebras

Recently Matt Wiersma from Waterloo spoke in our seminar about some of his work related to “exotic group C*-algebras”.  A more detailed account is on the arXiv.  I thought I would try to write up some of what I learned (probably, as usual, this is the most elementary points, but it was new to me).

What is an exotic group C*-algebra?  It is a completion of the group algebra which is different from the two standard examples (maximal and reduced) that we describe in C*-algebra courses.  Oversimplifying, we might make an analogy with compactifications of a locally compact Hausdorff space.   There is always a minimal one (one-point compactification) and a maximal (Stone-Cech), but there are also plenty of other things in between.  Analogously, in the case where a group \(\Gamma\) is non amenable, one might imagine that there should be many other C*-completions of \({\mathbb C}\Gamma\) lying between the maximal and the reduced C*-algebras.   (Whether, in fact, there exists any group for which \({\mathbb C}\Gamma\) has exactly two distinct completions appears to be an open question.)

Continue reading

The Witness Relocation Program

I gave a talk last week in the Geometry, Analysis and Physics seminar with the title “The limit operator symbol”.  This was an attempt to distill some of the ideas from my series of posts on the Lindner-Seidel and Spakula-Willett papers, especially post IV of the series.  In particular, I wanted to explain the crucial move from having a series of inequalities witnessed to having a similar series of inequalities centrally witnessed.  As Nigel put it during the seminar, we are attempting to describe a “witness (re)location program”: our witnesses are scattered all over \(\Gamma\), and we are attempting to move them all to the “courthouse”, that is, to a neighborhood of the identity, at the same time. Continue reading

Thermodynamics III: second law

The first law of thermodynamics says that heat is a form of energy. There is a lot of heat about!  For instance, the amount of heat energy it would take to change the temperature of the world’s oceans by one degree is about \(6 \times 10^{24}\) joules.  That is four orders of magnitude greater than the world’s annual energy consumption!  So, if we could somehow how to figure out how to extract one degree’s worth of heat energy from the oceans, we could power the world for ten thousand years!  Continue reading

Property A and ONL, after Kato

Hiroki Sato’s paper on the equivalence of property A and  operator norm localization was recently published in Crelle ( “Property A and the Operator Norm Localization Property for Discrete Metric Spaces.” Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal) 2014 (690): 207–16. doi:10.1515/crelle-2012-0065.) and I wanted to write up my understanding of this result.  It completes a circle of proofs that various forms of “coarse amenability” are equivalent to one another, thus underlining the significance and naturalness of the “property A” idea that Guoliang came up with twenty years ago. Continue reading