Future Prospects on UHECR and UHE Photon

Multi-messenger Approaches to Cosmic Rays:
Origins and Space Frontiers

http://www.fast-project.org

Toshihiro Fujii (ICRR, University of Tokyo) MACROS 2016 workshop, June 20th 2016 fujii@icrr.u-tokyo.ac.jp

Highlights on UHECR

Highlights on UHE Photon/Neutrino

Top-down model disfavored, close to GZK photon/neutrino

On-going Upgrade: TAx4

Detailed measurement on Hotspot

Enlarge the fourfold coverage to $TA \times 4 = Auger$, 3000 km^2

Expected in 2020 (Simulation)

H. Sagawa ICRC2015, T. Nonaka UHEAP2016

Assembly 25.Jan - 22.Feb Isezaki japan

On-going Upgrade: AugerPrime

Install 4 m² Scintillator to measure the mass composition by SD.

- Find Improve electromagnetic/muon separation of SD to measure the mass composition above 10^{19.7} eV.
 - Boost in statistics by a factor of ~ 10 compared to FD Xmax analysis.
- Small PMT in the water tank, FD operation during moon night.
- Origin of flux suppression, proton contribution above 10^{19.7} eV, new particle physics beyond the human-made accelerator.

R. Engel ICRC2015, R. Smida UHEAP2016

Strategy to detect UHE photon

Layered water tank

A. Letessier-Selvon et al., NIMA 767 (2014) 41

- ◆ Target: GZK photon around 10¹⁸ eV
- ◆ Surface array with mass composition sensitivity
 - ♦ >500 km² ground array, dense array with ~750 m spacing to be 100% efficiency at 10^{18.0} eV.
 - ♦ Better γ/Hadron separation by 10⁻⁵ required.

N. Nonaka UHEAP2016

Strategy to detect UHE photon Graciela B. Gelmini,

- ◆ Target: GZK photon above 10¹⁹ eV.
 - ◆ Search for deep *X* max showers by fluorescence technique.
 - ◆ 10×Auger effective area needed: JEM-EUSO mission or FAST project

E_{lab} (eV)

JEM-EUSO

Extreme Universe Space Observatory onboard Japanese Experiment Module

Pioneer detection of UHECRs from space

Orbit altitude: JEM-EUSO ~400km

J.H. Adams Jr. et al., Physics 44 (2013) 76–90

R&D for JEM-EUSO

EUSO-TA

 \bullet $E \simeq 10^{18.36}$ eV (highly uncertain)

GTU: 39873, pkt: 311, GTU in pkt: 65, UTC time: 2015-11-07 09:15:07,

• Distance: 2.6 km

EUSO-Balloon

MINI-EUSO in 2017

Helicopter with light sources

Observed Laser

EUSO-SPB(Super Pressure Balloon) will be launched in March 2017

M. Casolino, UHECR2014, UHEAP2016

JEM-EUSO and K-EUSO

◆ In the Russian Federal Space program. Mission of opportunity launch in FY2019

Physics Goal and Future Prospects

Origin and Nature of Ultra-high Energy Cosmic Rays and

Particle Interactions at the Highest Energies

5 - 10 years

Exposure and Full Sky Coverage

TA×4 + Auger

JEM-EUSO: pioneer detection from Low-cost space and sizable increase of exposure Detectors

Detector R&D
Radio, SiPM,
Low-cost

"Precision" Measurements

AugerPrime

Low energy enhancement (Auger infill+HEAT+AMIGA, TALE+TA-muon+NICHE)

10 - 20 years

Next Generation Observatories

In space (100×exposure): EUSO-NEXT

Ground (10×exposure with high quality events): Giant Ground Array, FAST

Fluorescence detector Array of Single-pixel Telescopes

- ◆ Target: > 10^{19.5} eV, ultra-high energy cosmic rays (UHECR) and neutral particles
- → Huge target volume ⇒ Fluorescence detector array

Fine pixelated camera

Single or few pixels and smaller optics

Too expensive to cover a huge area

Low-cost and simplified/optimized FD

Fluorescence detector Array of Single-pixel Telescopes

- ◆ Each telescope: 4 PMTs, 30°×30° field of view (FoV).
 - ★ Reference design: 1 m² aperture, 15°×15° FoV per PMT
- ◆ Each station: 12 telescopes, 48 PMTs, 30°×360° FoV.
- ◆ Deploy on a triangle grid with 20 km spacing, like "Surface Detector Array".
- ◆ If 500 stations are installed, a ground coverage is ~ 150,000 km².
- ◆ Geometry: Radio, SD, coincidence of three stations being investigated.

 13

FAST Exposure

- ◆ Conventional operation of FD under 10~15% duty cycle
 - **↑** Target: >10^{19.5} eV
- ◆ Observation in moon night to achieve 25% duty cycle,
 - ★ Target: >10^{19.8} eV = Super GZK events (Hotspot/Warmspot)
 - ◆ Test operation in moon night with Auger FD (Radomir Smida).
- ◆ Ground area of 150,000 km² with 25% duty cycle = 37,500 km² (12×Auger, cost ~50 MUSD)

Physics Target

First detection of UHE photons and neutrinos

Window of Opportunity at EUSO-TA

Telescope Array site Black Rock Mesa station EUSO-TA telescope FAST camera

- ◆ Temporally use the EUSO-TA optics at the TA site.
 - ◆ Two Fresnel lenses (+ 1 UV acrylic plate in front for protection)
 - ◆ 1 m² aperture, $14^{\circ} \times 14^{\circ}$ FoV = FAST reference design.
- ◆ Install FAST camera and DAQ system at EUSO-TA telescope.
- ◆ Milestones: Stable observation under large night sky backgrounds, UHECR detection with external trigger from TAFD.

- ♦ 8 inch PMT
 (R5912-03,
 Hamamtsu)
- → PMT base (E7694-01, Hamamatsu)
- ◆ Ultra-violet band pass filter (MUG6, Schott)

Results on the First Field Observation

- ♦ Data set: April and June 2014 observation, 19 days, 83 hours
 - ♦ Very stable observation under large night sky backgrounds
- ◆ Laser detection to confirm a performance of the prototype
- ♦ UHECR search : 16 candidates coincidence with TA-FD
- ◆ Very successful example among Telescope Array, JEM-EUSO, Pierre Auger Collaborations.

Full-scale FAST Prototype

- **◆ Confirmed milestones by EUSO-TA Telescope**
 - ◆ Stable operation under high night sky backgrounds.
 - **♦** UHECR detection.
- ◆ Next milestones by new full-scale FAST prototype
 - ♦ Establish the FAST sensitivity.
 - ◆ Detect a shower profile including *X*max with FAST

FAST meeting in December 2015 (Olomouc, Czech Republic)

Full-scale FAST Prototype

Robust Design of Telescope

- ◆ Robust design for maintenance free and stand-alone observation.
- ★ Adjustable elevation 15° or 45° to enlarge the FoV of the current FD.

Full-scale FAST Prototype

Concrete pad and hut being constructed

Telescope Array experiment, Black Rock Mesa site

We will plan to install the full-scale FAST telescope in September 2016

Possible Application of the FAST Prototype

- ◆ Install FAST at Auger and TA for a cross calibration.
- ◆ Profile reconstruction with geometry given by SD (smearing gaussian width of 1° in direction, 100 m in core location).
 - \bullet Energy: 10%, Xmax : 35 g/cm² at $10^{19.5}$ eV
 - ◆ Independent cross-check of Energy and Xmax scale between Auger and TA

Pierre Auger Observatory

Pierre Auger Collaboration, NIM-A (2010)

Summary and Future Prospects

- On-going upgrades of UHECR Observatories
 - TA×4: 3,000 km² area equivalent with Auger
 - AugerPrime: 3,000 km² area, mass composition sensitive measurement by water tank + scintillator
- Next-generation observatories
 - JEM-EUSO
 - ~30,000 km² from the space, R&D tasks: EUSO-TA, EUSO-Balloon, Mini-EUSO, EUSO-SPB, K-EUSO
 - Fluorescence detector Array of Single-pixel Telescopes (FAST)
 - Deploy the economical fluorescence detector array, UHECRs and neutral particles with ~30,000 km² on the ground

Advertisement: UHECR2016

International Advisory Committee:

S.W. Barwick, V.S. Berezinsky, P. Blasi, T. Ebisuzaki,

R. Engel, P.L. Ghia, F.L. Halzen, Y. Itow,

K.-H.Kampert(Chair), P. Lipari, K. Makishima,

S. Ogio, A.V. Olinto, M.I. Panasyuk, I.H. Park,

P. Picozza, P. Privitera, D. Ryu, H. Sagawa, P. Sokolsky,

R. Yamazaki

Local Organization Committee:

Y. Kawasaki, K. Kawata, S. Nagataki,

T. Nonaka, S. Ogio (Secretary), H. Sagawa (Chair), T. Sako,

M. Takeda, Y. Tsunesada, S. Udo, T. Yamamoto

Starts 11 Oct 2016 08:00 Ends 14 Oct 2016 18:00 Japan

October 11-14 @ Kyoto, Japan

https://indico.cern.ch/event/504078/

Backup

FAST Webpage

"Easy" to Change Elevation

Ray-Trace Simulation

- ★ The spherical surface on PMT has complicated point spread function.
- ♦ We need to calculation efficiency of optics.
 - ◆ It will be used in the offline analysis after data-taking is started.

UV Band-pass Filter

UV band pass filter used in MAGIC

Laser Signal to Check Performance Fluorescence detector Array of Single-pixel Telescopes

- ◆ Vertical Ultra-Violet laser at 6 km from FAST ≒ ~10^{19.2} eV
- ◆ Expected signal TAFD/FAST: (7 m² aperture × 0.7 shadow × 0.9 mirror) / (1 m² aperture × 0.43 optics efficiency) ~10
 - ◆ TAFD Peak signal : ~3000 p.e. / 100 ns
 - ◆ FAST Peak signal: ~300 p.e. / 100 ns. All shots are detected significantly.
- ◆ Agreement of signal shape with simulation.

UHECR Signal Search

TAFD

- ◆ Data set: April and June 2014 observation, 19 days, 83 hours.
 - ♦ Stable observation.
- We searched for UHECR signal in coincidence between FAST and TAFD.
- 1. Search for TAFD signal crossing the field of view (FoV) with FAST.
- 2. Search for a significant signal (>5σ) with FAST waveform at the same trigger.
- → 16 candidates found.
- ◆ Low energy showers as expected.

Distance vs Energy (from TAFD) for Candidates

Comparison to Expected Signal from UHECRs

- ◆ Geometry, Energy and Xmax was reconstructed by the TAFD monocular analysis.
- ◆ Based on these information, we calculate expected signal by FAST prototype.
- ♦ Size, shape and width are consistent with expectation.
 - * A signal location is fluctuated within the TAFD trigger frame of 12.8 μs.

Robust Design for Long Term Operation

frame for dark shroud (DUST and STRAY LIGHT protection)

horizontal parking position (testing of opto-mechanical construction)

Hut for FAST (3 telescopes)

Another building? with different azimuth

Enlarge concrete pad? Cable ground?

360° camera for monitor?

Site Candidates

Fluorescence detector Array of Single-pixel Telescopes

Comparison to Expected Signal from UHECRs

- ◆ Geometry, Energy and Xmax was reconstructed by the TAFD monocular analysis.
- ◆ Based on these information, we calculate expected signal by FAST prototype.
- ♦ Size, shape and width are consistent with expectation.
 - * A signal location is fluctuated within the TAFD trigger frame of 12.8 μs.

FAST DAQ System

TAFD external trigger, 3~5 Hz

15 MHz low pass filter

- Struck FADC 50 MHz sampling, SIS3350
- GPS board, HYTEC GPS2092

Anode & dynode Signal

Camera of FAST

High Voltage power supply, N1470 CAEN

All modules are remotely controlled through wireless network.

Amplifiers
R979 CAEN
Signal×10

777,Phillips scientific Signal×50

Camera of FAST

ΠîL

Will it hit the back

plane? Depends on / position of lens focus.

- ◆ PMT 8 inch R5912-03
- ◆ E7694-01 (AC coupling)
- → MUG6 UV band pass filter
- ◆YAP (YAIO₃: Ce) scintillator with ²⁴¹Am (50 Hz) to monitor gain stability.

YAP Signal

Efficiency and Resolution of FAST

log(E(eV))

GPS Timing and CLF Signal

Central Laser Facility

Vertical UV laser shooting every 30 minutes,

21 km from FAST,

10 Hz, 2.2 mJ, 300 shots

GPS timing difference (FAST - TAFD) [μs]

- ◆ FAST-TAFD timing resolution, 100 ns.
 (20.9 µs is the TAFD trigger processing time.)
- ightharpoonup laser signal > $10^{19.2}$ eV at 21 km
- ♦ peak signal ~ 7 p.e. / 100 ns ($σ_{p.e.}$ = 11 p.e.) at the limit of detectability

CLF Simulation

