Project Objective

- Provide an approach for deeper and real-time understanding of ongoing events in a monitored network.
- Accurately detect anomalies in the behavior of machines and inappropriate use of the network.
- Identifying the nature and severity of the observed security incidents, by efficiently limiting the quantity of needed information.

Our Approach

- First system combining detections and classification of network events with real-time reasoning.
- Use of Fuzzy Ranking for disambiguating incidents, in case a clear mapping to known cases cannot be determined.
- Inference on completely unknown domains, plus early identification of malicious domains, and inference on their relationship with well-known malicious domains.

Case Retrieval and Analysis – Key Steps

1. **Rank candidate cases** by producing Membership Degrees for the incident.
2. **Verify presence of a dominant case.** Select first K Nearest Neighbor cases from the set of ordered cases. Check cohesion of the k-NN. Search a dominant case. If a dominant case is found, we model the incident as an instance of it.
3. **Apply fuzzy ranking.** We compute an additional ranking for each case in the previous k-NN set. Fuzzification and Defuzzification functions employed with the purpose of values normalization.
4. **Create a new case.** If not possible to find a dominant case, classify the incident as new case by starting the case profiling process. Store it in the KB.
5. **Merge cases.** Model periodically optimized: if several incidents with same features are mapped on the same subset of cases merge them in a single case.

Graphic User Interface

A research project sponsored by Hewlett-Packard Labs in collaboration with the College of Information Sciences and Technology, Penn State University.

Contact: gxp18@psu.edu