Combustion Instabilities

Understanding Transient Combustion Phenomena in Low-NOx Gas Turbines


DOE announcemnet:



Samarasinghe, J., Culler, W., Quay, B., Santavicca, D. A., O’Connor, J. (2017) “The effect of fuel staging on the structure and instability characteristics of swirl-stabilized flames in a lean premixed multi-nozzle can combustor.” Journal of Engineering for Gas Turbines and Power, 139(12), 121504.

Culler, W., Samarasinghe, J., Quay, B., Santavicca, D. A., O’Connor, J. (2017) “The effect of transient fuel staging on self-excited instabilities in a multi-nozzle model gas turbine combustor,” ASME Turbo Expo, Charlotte, NC


A Fundamental Framework for the Robust Multivariable Stabilization of Time-Delayed Acoustic-Flame Interaction Dynamics, with Application to Gas Turbines


This project is conducted to attenuate the pressure oscillations associated with instability in combustion systems such as gas turbine, rockets, industrial process furnaces, and boilers. The need for controlling combustion instabilities is growing rapidly as society pushes for combustion systems with reduced emissions and increased ability to respond to fluctuating power demands. Gas turbines play an important role in ensuring the resilience of the power grid, where their ability to respond to both slow and rapid demand fluctuations enables them to provide a broad portfolio of ancillary grid services. However, the intermittent, transient operation of these grid-tied generators has not been traditionally considered in their design, which can lead to high-amplitude instability during the above operations. From the study on the instability onset of a laboratory combustor undergoing transient operation[1], the dramatic increase in combustion-related pressure oscillations by almost an order of magnitude, in less than half a second, highlights the degree to which combustion instability can be disruptive and potentially damaging in gas turbine systems.

The goal of the research is firstly to furnish a fundamental framework for the robust, multivariable, combined passive/active attenuation of combustion instability in a broad range of applications. This framework will take into account the prominent role played by transport delay dynamics in combustion instability, as well as the degree to which uncertainties in factors such as fuel composition and ambient temperature/pressure/humidity affect these delay dynamics. The second goal is to demonstrate the above fundamental framework using a flexible combustion rig as an experimental validation.