
Journal of Mathematical Economics 21 (1992) 461-481. North-Holland 

Benefit functions and duality 

David G. Luenberger 

Stanford University, Stanford CA, USA 

Submitt~ May 1990, accepted April 1991 

This paper studies a new representation of individ~l preferences termed the benefit function. 
The benetit function b(g; x,u) measures the amount that an individual is willing to trade, in 
terms of a specific reference commodity bundle g, for the opportunity to move from utility level 
a to a consumption bundle x. The benefit function is therefore a generalization of the 
willingness-to-pay concept. This paper studies properties of this function, including its continuity 
and structural properties and its indirect relation to the underlying utility function. A very 
important property of the benefit function is that it is the natural precursor of the expenditure 
function, in the sense that the expenditure function is a (special) dual of the benefit function. 
This duality is shown to be complete by proving that when appropriate convexity properties 
hold, the (correspondingly special) dual of the expenditure function is, in fact, the benefit 
function. The duality makes the benefit function a powerful tool for analysis of welfare issues. 

1. Introduction 

The concept of individual preferences forms the foundation for the modern 
microeconomic theory of choice. The preference construct is rich enough to 
provide a general explanation for how individuals make economic decisions; 
and yet by purposely avoiding the assignment of absolute measures, it does 
not invite inter~rsonal comparisons. Indeed, it supports the common 
premise that such comparisons are meaningless. 

Nevertheless, it is frequently convenient (and sometimes necessary) to, in 
fact, make interpersonal comparisons; such as when (certain types of) 
decisions are made that affect the welfare of a group of individuals. Such 
comparisons can be conducted formally by defining an overall societal 
preference relation (or welfare function). But a more direct technique is to 
represent individual preferences in a manner that facilitates combination. 
This approach has led to the concepts of willingness to pay, consumer 
surplus, and compensating and equivalent variations - which all have units 
of money, and therefore when any one of these is compared among 
individuals, they are all at least in comparable units. And, under various 
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special circumstances, it is actually meaningful to combine these measures 
across individuals. 

This paper discusses another special measure - termed the benefit function 
- derived from individual preferences, which can be meaningfully combined 
across individuals. The benefit function measures utility with respect to a 
given reference utility level and in terms of the willingness to trade for a 
commodity bundle g. It therefore measures the benefit, in terms of g, of a 
move from a given utility level to a new bundle. This simple measure has a 
number of very remarkable and important properties. First, the benefit 
function is a natural precursor of the standard expenditure function; that is, 
the expenditure function is the dual of this function. In view of the 
importance of the expenditure function in microeconomi~ theory, the pre- 
cursor status of the benefit function would seem, itself, to indicate that the 
benefit function is likely also to be very useful. 

Second, and perhaps most importantly, the benefit functions of several 
individuals can be directly summed to obtain a meaningful aggregate benefit. 
This can be used like other aggregate measures to assess the welfare 
implications for changes in the economy. 

This paper focuses on two main areas. The first is the general definition 
and properties of the benefit function. These include the continuity, con- 
cavity, algebraic, and monotonic properties. The second area is the duality 
between the benefit function to the expenditure function. It is shown that (in 
a certain sense) the dual of the benefit function is, in fact, the expenditure 
function. Then, to complete the duality, it is shown that the corresponding 
dual of the expenditure function is, under suitable convexity assumptions, 
equal to the original benefit function. This shows that benefit functions and 
expenditure functions form a natural dual combination. 

2. The benefit function 

Consider a world with d homogeneous and infinitely divisible commodi- 
ties. A bundfe of these commodities is a vector XE Rd. Consider also a single 
consumer. This consumer has a consumption possibility set SC Rd from which 
bundles could be chosen if there were no economic constraints. For much of 
our work below, we assume that S= Rd, (that is, the set of nonnegative 
vectors in Rd), but more general 3’s may also be considered. However, we 
shall always assume that .!Z is closed, convex, and has a lower bound. 

The consumer also has a preference ordering on E that can be represented 
by a continuous utility function u. We denote the range of u over S by “11. 
With these preliminaries, we introduce our main definition. 

Dejkition. For any g, x, u with g # 0, g E Rd, , x E !X, u E 42 let 
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ifx-pgEX,andu(x-j?g)zuforsomep 

--co otherwise. 

The function b defined this way is the benefit function associated with the 
utility function u and the consumption possibility set L!Z. 

The maximization operation in the definition is well defined because u is 
continuous and 3 has a lower bound. There is a simple economic interpre- 
tation of b(g; x, u). Basically, b(g; x, u) is the amount of commodity bundle g 
that the consumer would be willing to trade for the possibility of moving 
from utility level u to the bundle x. 

The vector g is a reference vector defining the measure by which 
alternative bundles are compared. It might be taken as g=(l, 1,. . . , 1) or as a 
specific commodity. Typically, the bundle g does not vary in a discussion. 

There are some associated definitions which characterize various possible 
choices of the reference vector g. 

Definition. The vector g is said to be good (that is, g is a good bundle) if for 
any XEX there holds x+&go% and u(x+t~g) >u(x) for all u>O. The bundle 
g is weakly good if x+ccg~X and u(x+ag) MU for all a>O. The bundle g 
is locally good or locally weakly good at x ~37 if the above, respective, 
condition holds for all EE(O, g] for some oS>O. 

An important special case arises when a monotonicity assumption holds. 

Definition. The utility function u is said to be monotonic if .T=R”+ and for 
any x’, x E .?Z with x’ 2 x there holds u(x’) 2 u(x). 

Note that we consider monotonicity to be an assumption about both 3 and 
u. Clearly, if u is monotonic, then any g#O, g?O is weakly good. 

2.1. Fundamental properties 

The remainder of this section examines the fundamental mathematical 
properties of the benefit function. In particular, we examine when the utility 
function can be recovered from the benefit function, and we shall explore the 
structural, continuity, concavity, and monotonicity properties. Finally we 
shall prove a converse theorem showing that any function with appropriate 
properties is, in fact, a benefit function of some utility function. 
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The utility function tl can usually be recovered from the benefit function 
by solving the implicit equation 

b(g; x, u) = 0 

for u in terms of X; but some special conditions are required for this to work 
- essentially the ray through x in the direction g (both positive and negative) 
must cut the set where utility has value u in at most one point. Special cases 
are spelled out in the following proposition. 

Proposition I. (a) If g is good, then u(x) =u implies b(g; x, u) =O. 
(b) Zf x is in the interior of X, then b(g; x, u) = 0 implies u(x) = u. 

Proof. (a) Suppose that u(x) = u. Then clearly b(g; x u) 2 0. However, since g 
is good, U(X - fig) c u(x) = u for any /3 > 0. Hence, b(g; x, u) = 0. 
(b) If x is an interior point of 3, b(g; x,u)=O implies that u(x)~u and 
u(x - fig) < u for /I > 0. By continuity u(x) = u. [7 

The benefit function enjoys certain structural properties. 

Proposition 2. The benefit function satisfies: 
(a) ~onotonicity: b(g; x, u) is nonincre~sing with respect to u. 
(b) Trunslution: If x E X, x + ag E .%‘, then b(g; x + erg, u) = a + b(g; x, u). 
(c) Sign preservation: u(x) 2 u implies b(g; x, u) 20. 
(d) Reverse sign preseru~tion: If g is weakly good, then b(g; x,u)zO implies 

Proof. The first three of these follow immediately from the definition. To 
prove (d) suppose g is weakly good and b(g; x, u) 20. For /I = b(g; x, u) we 
have u(x-pg) 2 u with /I 20. Since g is weakly good, u(x) 2 u(x -/3g) 2 U. 

0 

We turn next to the continuity properties of the benefit function. Nor- 
mally, g is fixed in any development, so we are mainly interested in 
continuity with respect to x and U. However, we can consider continuity with 
respect to g as well. For generality, we shall temporarily relax our running 
assumption that u is continuous. 

Proposition 3. Suppose u is upper semi-continuous. Then b is upper semi- 
continuous with respect to g, x, and u (jointly). 

Proof. Fix g, 2, zi with g #O, and let &=b(g; 2, ti). We must show that given 
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E>O there is a neighborhood of (g,f, U) such that for all (g,x, u) in this 
neighborhood 

b(g; x, u) < 6+ E. 

Suppose the converse. Then there is a sequence {(g,, Xi, uJ} with gi +g, xi-+X, 
Ui~zS and bi =b(g,; xi, ui) 1 &+a for all i. We can assume that the gi’s are 
bounded away from 0. The sequence {bi} is bounded above because the 
range of j?‘s such that Xi -figi is feasible is bounded above (recall gz0, 
X=R”,). Hence, there is a convergent subsequence of {bi}, which without 
loss of generality, we can take to be {bi) itself. Thus bi --, b0 for some be. 

We have U(Xi --big,) 2 Ui. By upper semi-continuity of U, it follows that 
u(X - b,g) 2 lim u(xi -big,) 2 U. Hence 62 bO. But this contradicts bi 2 6+s for 
each i. Therefore such a sequence cannot exist, and b is upper 
semi-continuous. 0 

If g is good, then stronger continuity results hold. 

Proposition 4. Suppose that g is good and u is continuous. Then b(g; x, u) is 
continuous with respect to x and u (jointly) in the interior of the region of 
?Z x 9 where b(g; x, u) is finite. 

Proof. In view of Proposition 3, we must only show that b is lower 
semi-continuous. Fix X EX and UE@. Let &= b(g; X, ii). Suppose b were not 
lower semi-continuous at (X, ri). Then there is E>O and a sequence {Xi, Ui} 
such that xi 42, ui -,U and b, = b(g; Xi, ui) <6-e for all i. We know that 
X-~~EX. Hence, there is an I such that xi -(6-s/3)g~% for all i > I. We 
also have u(xi- big) zui, and since bi is the maximum value for which this 
inequality holds, it follows that u(xi -(bi + &/3)g) c ui* 

Now let SL be the closure of a neighborhood of 2 (relative to 9) such that 
for all x E a, x - (6- .s/3)g is feasible. Let 

We have 6>0 because g is good and u is continuous on Q. 
From U(X~ -(bi +&/3)g) <ui and bi <6-c, we have U(Xi -(6-2&/3)g) <Ui. 

From the definition of 6, 

U(Xi -(b- .5/3)g) 6 U(Xi - (6- 2&/3)g) - 6 5 ui - 6. 

Taking the limit, we obtain u(Z-(6-s/3)g) 5 G-6 which contradicts the 
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definition of 6. Thus no such ((x,,uJ) sequence can exist. Hence the function 
b is lower semi-continuous. q 

One of the most important properties of the benefit function is that it is 
concave if u is quasi-concave. 

Proposition 5. If the utility function u is quasi-concave, then b(g; x,u) is 
concave with respect to x and continuous with respect to x on the interior of 
the region where it is finite. Conversely, if b(g; x, u) is concave in x for all 
u E 42, and g is weakly good, then the utility function is quasi-concave. 

Proof. Assume u is quasi-concave. Let x,,x,E% be given. Select ue@. 
Suppose first that b(g; x1, u) and b(g; x2, u) are finite. Then, by definition, 

4x1-0; xl,ulg)Lu, 4x2 - bk; xz, uk) 2 u. 

By quasi-concavity of the utility function 

u(orx, -cib(g; x,,u)g+(l-4x2 -(I -4b(g; xz,u)g)lu, 

for any a, 0 5 a 5 1. This means that 

b(crx,+(l-a)x,)zab(g; xl,@+(l-a)b(g; x~,u). 

If either b(g; x1, u)= -co or b(g; x2, u)= - 00, it is true by default that 
b(g; axI +(l -c~)xJz - 03 and hence the concavity relation holds. The 
continuity property stated in the proposition is true for any concave 
function. 

Conversely, suppose b is concave. Suppose x1 and x2 satisfy u(xl) zu, 
u(x.J &u. By Proposition 2(c), b(g; x1, U) 2 0, b(g; x2, u) 2 0. By concavity, 

b(g; =x1 +(l-a)x2,u)20. 

Then if g is weakly good, Proposition 2(d) gives u(ax, +(l -or)xz) zu. Hence 
the function u is quasi-concave. •l 

We show that the benefit function inherits monotonicity that might be 
possessed by the underlying utility function. 

Proposition 6. Let 3 = Rd, . 
(a) If u is monotonic on 3, then b(g; x,u) is monotonic with respect to x. 
(b) If u is strongly monotonic and continuous on S, then in the interior of the 
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region where b(g; x,u) is finite, b(g; x, u) is continuous and strongly 
monotonic with respect to x. 

Proof. (a) Fix UC% and suppose x/Lx, with XEX, x’EX. Let b= b(g; x,u) 
and assume b> - co. Then u(x- bg)zu. By monotonicity u(x’- bg) 2~. 
Hence, b(g; x’, u) 2 b. If b= - 00, it is clear again, by default, that 
b(g; x’, u) 2 b. 
(b) Fix UE% and suppose x’Lx,x’#x, with XEX, x’EX. Let 
b = b(g; x, u) > - 00. Then u(x - bg) 2 u. By strong monotonicity u(x’- bg) > u. 
Continuity of the utility function then implies b(g; x’,u)> b. Continuity of 
b(g; x,u) with respect to x follows from Proposition 4 since under strong 
monotonicity any g 10, g # 0, is good. 0 

Finally, we give the following converse proposition which shows which 
properties of a function insure that it is in fact a benefit function. Aside from 
continuity, the properties required are the translation property and the 
property that b(g; x, u) be nonincreasing in u. 

Proposition 7. Let 42 be a closed interval on the real line and let b be a 
function defined on 95 x 42 with the following properties: 
(a) b(x, u) is upper semi-continuous with respect to x and u (jointly). 
(b) For every x E X there is a u E @ such that b(x, u) 10. 
(c) b(x, u) is nonincreasing with respect to u E a. 
(d) There is a gE Rd, g #O, such that for all u >O, x EX, u ~42, g#O, there 

holds x + ag E % and b(x + erg, u) = b(x, u) + u. 

Then b(x,u) is the benefit function, with reference vector g, of an upper 
semi-continuous utility function on X with range 42. [That is, b(x, u) is really 
b(g; x, u).] Furthermore, g is weakly good for the corresponding utility function. 

Proof. Let 

u(x)=max{o: b(x,o)~O,oE%!}). 

By property (b) the maximization operation is not void. By the upper 
semi-continuity of b(x,u) with respect to u, and the compactness of % the 
maximum exists. We show that the function u defined above is upper semi- 
continuous. Suppose it were not. Then there is E>O and a sequence {Xi} with 
xi E X, xi + x such that U(xi) > ~(2) + E for all i. Let Ui =u(xJ. Since the Ui’s are 
contained in a bounded interval, there is a limit point U. Without loss of 
generality, we can assume ui +u. We have b(x, ui) 20 for all i. Since b is 
upper semi-continuous, it follows that b(Z, 17) 20. Therefore, by definition 
u(X) 2 U. However, since u(xi) >u(X) + E for all i, we must have r.iz u(2) +E, 
which is a contradiction. 
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Next we show that b is the benefit function of u. Let 6 be the benefit 
function of u (with reference g). First assume 6(x, u) > - co. Then 

&x,u)=max{p:u(x-bg)zuu) 

=max(B:max(o:b(x-Bg,u)zO}zu} 

In the maximization with respect to /3 we note that /I= b(x, u) is feasible, 
since then u = u is feasible for the inner maximization, Thus 6(x, u) 2 b(x, u). 

Now take /I > b(x, u) in the inner maximization. Then u must be selected so 
that b(x,u)> b(x,u). By the nonincreasing nature of b(x,u), it follows that 
u <u, and this is not feasible for the outer maximization. Therefore, 
6(x, u) 5 b(x, u). H ence, together with the above we have 6(x, u) = b(x, u). 

Now consider the case 6(x,u)= - co. This means that u(x-j3g) <u for all 
/I. This in turn means by definition of u(x - fig), that 

max(u:b(x-/Ig,u)zO}<u 

for all /I. Equivalently, u 2 u implies b(x - j?g, u) < 0, which by the translation 
property means u 2 u implies b(x, u) -cp for all p. Hence b(x, u) = - 00 for all 
u 2 u. In particular b(x, u) = - cg. 

Now we show that g is weakly good for this utility function. Suppose 
x~.%, and cr>O. Then 

u(x+ag)=max{u:b(x+crg,u)>=O} 

=max{u:b(x,u)+azO}. 

Let U=u(x),U=u(x+ag). We have b(x,ii)zO and tJ=max{u:b(x,u)L -a}. 
Thus tJ?ii, which shows that g is weakly good. IJ 

2.2. Aggregate benefits 

Formally, we can define the aggregate benefit function for a group of 
consumers by summing their individual benefits. For example, suppose there 
are n consumers. Each consumer i has a consumption possibility set pi with 
the properties discussed in section 2 and a continuous utility function ui. 
Then the aggregate benefit function for this group of consumers is by 
definition equal to the maximum amount of the bundle g that the group 
would trade to move from existing utility levels U =(ui, u2,. . . u,) to the 
allocation X=(x1,x2,..., x,). That is, the benefit function for the group is 
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B(g; X, U) = max f: Bi sub to ai(x1 --P,g)Zu,, 
i=l 

where B(g; X, U) = -cc is understood if the above constraints are not 
feasible. 

It is clear that the maximization problem above separates into n problems. 
That is we see that 

B(g; x, u, = i bi(g; xi, ui). 
i=l 

Thus, the benefit function of the group is simply the sum of the individual 
benefit functions. That is, benefit functions can be meaningfully summed 
across consumers to obtain a measure of aggregate benefits. 

3. Examples 

In this section, we compute the benefit function for some specific func- 
tional forms. 

Example 1 (Cobb-Douglas). Consider the Cobb-Douglas utility function 

4X1,X,,..., xm)= Jy xy, 
i=l 

where ai>O,i=1,2 ,..., m. For general g>O the benefit function cannot be 
expressed in closed-form. However, for 

g=(O,O )...) l,o )...) 0) 

with the 1 in the jth position, the benefit function is found by solving 

(xj - p)“j n xfi = u. 
i+j 

The resulting /I is equal to b(x, u). Hence 
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[ 1 
llaj 

b(X,U)=Xj- ____ ni+ujxy 
Example 2 (Cobb-Douglas in logarithmic form). For 

4x1, x2,. ..,x,)= i crilnxi, 
i=l 

andg=(O,O ,..., 1,O ,..., 0) as in Example 1, we solve 

C5jln(Xj-/3)+ C crilnxj=u. 
i#i 

Hence 

b(x, U) = xj - exp 
Xi U-Ci+jailIl 

uj 

Example 3 (Leontief utility). Consider the utility function 

u(x,, x2,. . . ,x,) =min 
i 

Xl x2 x, -, -, . . . ,a 
at a2 ))I I 

and the reference good 

g=(l, l)...) 1). 

The benefit function is found by solving u(x - fig) = u. Or, equivalently, 

. mm 
i 

x1-P x2-B x,-P __ -,...,- 7 
1 

=u. 
al a2 a, 

This gives 

b(x,u)=min{x,-alu,x2-a2u,...,x,-a,,,u}. 

Example 4 (additive). Suppose 

&,x2,..., X,)=fl(Xl)+f2(X2)+...+fn(X,), 



D.G. Luenberger, Benefit functions and duality 471 

where each fi is concave and increasing. Let us take g =( 1, 0, . . . ,O). Then the 
benefit function is found by solving 

flh -b)+f*(x,)+...+f,(x,)=u. 
Hence 

b(x,u)=x,-f;‘{u-f,(x,)-f,(x,),...,f,(x,)}. 

The logarithmic form of the Cobb-Douglas utility (Example 2) is an 
example of this type. 

Another special case of interest is 

This gives 

b(x, u) =x1 + 
1 

=x,+ x2x3 

u - l/x, - l/x3 nx2xJ+x2+x3 

Example 5 (the oriented-quadratic utility). We propose here a special kind 
of degenerate quadratic utility that is both mathematically convenient and 
economically meaningful. We refer to this form as the oriented-quadratic 
form. 

Let the reference bundle g 2 0, g #O, be given. Select d satisfying’ dTg= 1 
and select an n x n symmetric matrix B that is negative semi-definite (of rank 
n- 1) with Bg=O. Then define 

u(x) = dTx + +xTBx. 

This utility function is oriented in the direction g. The translation property of 
the utility function is easily verified as 

u(x + ag) =dT(x+ ag) + f(x + ag)TB(x + ag) 

=dTx+adTg+$xTBx+agTBx++a2gTBg 

= dTx + a + +xTBx 

= u(x) + a. 

‘In this example we consider all vectors to be column vectors and let dT denote the transpose. 
This clarifies the equations that have products of vectors times matrices. 
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The corresponding benefit function is found from the equation 

dT(X - bg) + 3(x - bg)TB(x - bg) = u. 

Or (using the translation property found above) 

dTx-b++xTBx=u. 

Hence 

b(x, u) = dTx + +xTBx - u. 

We see that the utility function and the benefit function have essentially 
identical expressions in the oriented-quadratic case. The reason is that the 
indifference curves are equally spaced. 

Example 6 (general oriented utility). Suppose 

u(x) = dTx + F(x) 

where dTg= 1, F(x+ erg) = F(x) for all a, and F is concave. Then, it is readily 
deduced that 

b(x, u) = dTx + F(x) -u. 

4. Duality properties 

We come now to what is one of the most important properties of the 
benefit function; namely, its dual relation with the expenditure function. We 
show that the benefit function is the precursor of the expenditure function, in 
the sense that the expenditure function is (in a certain sense) the dual of the 
benefit function. This leads naturally to a definition of a second dual - the 
dual of the expenditure function - which is termed the hyper-benefit function. 
A central result of this section establishes the full duality of these concepts by 
showing that under appropriate conditions the hyper-benefit function is, in 
fact, identical to the benefit function. 

Definition. Given a utility function u on X, the expenditure function is 

e(p,u)= inf {p.x:u(x)2u}, 
XEI 

where PER” and UE%. 
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Note that if the function u is continuous and if p>O, then the infimum in 
the definition will be achieved, and hence can be replaced by minimization. It 
is well known that the expenditure function enjoys a number of useful 
properties. 

Proposition 8. The expenditure function satisfies: 
(a) Homogeneity: e(tp, u) = te(p, u) for all t 2 0. 
(b) Monotonicity: e(p,u) is nondecreasing in u. 
(c) Concavity: e(p,u) is a concave function with respect to p. 
(d) Continuity: as a function of p, e(p,u) is upper semi-continuous on the 

interior of the region where it is finite. 

Proof. See Diewert (1974) and Berge (1963). 

We now derive an alternate characterization of the expenditure function 
that shows its relation to the benefit function. [Throughout the following we 
frequently write b(x,u) for the value of the benefit function, suppressing the 
dependence on g.] 

Proposition 9. Suppose p E R” with p. g > 0. Then 

e(p,u)= inf {p’x-b(x,u)p.g}. 
xsl 

Proof. Fix u E’-@ and p E R” with p .g>O. Given any XEX, suppose first that 
b(x, u) > - co. We have u(x - b(x, u)g) 2 u. Hence, 

P * (x - b(x, 4g) 2 e(p, 4. 

Alternatively, if b(x, u) = - 00, then clearly p. x - b(x, u)p ‘g 2 e(p, u) by default. 
Hence, in either case, p. x - b(x, u)p ‘g 2 e(p, u). Thus 

inf{p.x- b(x,u)pg} ze(p,u). 
x 

To show the converse, fix E > 0 and suppose x E % is such that u(x) 2 u and 
p - x 5 e(p, u) + E; (that is, x is close to achieving the infimum in the definition 
of e(p, u).) By Proposition 2(c), b(x, u) 2 0. Also since p *g > 0, we have 

p.x-b(x,u)p*g5p.xse(p,u)+e. 

Since E>O was arbitrary, 
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inf {p-x-b(x,u)p.g}Se(p,u). 0 
X~b 

This alternate characterization of e(p, u) applies only if p .g>O. This would 
include all p 20 if g> 0. In general, prices with p *g 50 are not needed, and 
hence the apparent restriction is of no real consequence. 

The factor p * g in the second term of the above representation can be 
eliminated by simply setting it to 1. This essentially restricts the p vectors 
under consideration to those satisfying p’g= 1. This, of course, is the 
standard form of normalization used in many economic arguments. We then 
obtain (trivially) the following corollary, which displays the relation between 
b and e in a neater form. 

Corollary 1. Zf p.g= 1, then 

e(p, u) = inf (p 1 x - b(x, u)}. 
xsl 

(1) 

The relation between the benefit function b and the expenditure function e 
can be illustrated graphically in a simple and intuitive way. For the 
construction in two dimensions, it is simplest to take g=( l,O), corresponding 
to the direction of the horizontal axis. With this choice, if a price vector p is 
normalized with p *g= 1 (that is, (P)~ = l), then the constant c associated with 
the hyperplane H= {x: p’ x = c} is just the distance from the origin to the 
point where the hyperplane intersects the horizontal axis. Thus, given x and 
p, the value p * x is measured by the point where the hyperplane through x 
intersects the horizontal axis. 

The alternative characterizations of the expenditure function are shown in 
fig. 1. Usually the value of the expenditure function is found by finding the 
point x* in the upper contour set S = {x: u(x) 2_u} which has the least value 
of p. x. This point will be that where a p-hyperplane is tangent to S. The 
value of the expenditure function is then p. x*. If p .g = 1, this value will be 
equal to the distance from the origin to the point where the p-hyperplane 
intersects the horizontal axis. 

The formula given by the corollary above does not restrict the search to 
x’s inside of S. A point such as x r in the figure will also yield a value of 
p. x- b(g; x, u) equal to e(p, u). While a point such as x2 will lead to a larger 
value. The new formulation introduces a bit of degeneracy, in the sense that 
many x’s (namely all those on the horizontal line through x*) will achieve 
the infimum in (1). 

To make the duality between b and e more explicit, we introduce the dual 
of e. 
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Fig. 1. Alternative definition of expenditure function. 

Definition. Corresponding to the expenditure function e, we define the 
hyper-benefit function 

6(g; x,u)=inf{p.x-e(p,u):p*g=l} (2) 

for any geR”,,g#O,xeS and UE%. 

The formula is, of course, the dual of (1). It is not surprising, therefore, 
that we have the following. 

(4 
(4 
(4 
(4 

Proposition 10. The hyper-benefit function satisfies: 
Translation: if x E 2” and x + ag E SF, then 6(g; x + ag, u) = a + 6(g; x, u). 
Monotonicity: 6(g; x, II) is nondecreasing in u. 
Concavity: 6(g; x,u) is concave with respect to x. 
Continuity: ii(g; x,u) is continuous with respect to x in the interior of the 
region in which it is finite. 

Proof. (a) 

p.(x+ag)-e(p,u)=p*x+ap*g-e(p,u). 

Hence, if p.g= 1, 



416 D.G. Luenberger, Benefit functions and duality 

p*(x+ag)-e(p,u)=a+p*x-e(p,u). 

Taking the inlimum over p gives the result. 
(b) This follows because for any p, the function p * x-e@, u) is nonincreasing 
in u (by Proposition 8b). 
(c) Fix UC%!. Given x~,x~EX and a, Osa51, 

k axI +U -ah,4 

=inf{p.(ax,+(l-a)x,)-e(p,u):p.g=l] 

Zinf{ap.x, -ae(p,u):p.g= l} 

+inf{(l-a)p.x,-(l-a)e(p,u):p.g=l} 

=a&(g;x,,u)+(l-a)6(g; x2,u). 

(d) This follows from part (c). 0 

We now come to the main duality result, showing that the hyper-benefit 
function is the dual of the dual of the benefit function itself. The hyper- 
benefit function, being defined by hyperplanes, essentially uses only the 
convexified version of the original utility function. If the original utility 
function is quasi-concave, then the hyper-benefit function will agree with the 
benefit function. (Note 1: The proof of the following main theorem could be 
simplified if either g was good, the utility function was strongly monotonic, 
or g> 0. It is, perhaps, surprising that in fact none of these conditions is 
required.) (Note 2: This theorem is similar to the standard duality theorem 
for conjugate duality. However, because our definition of duality is a 
degenerate version of conjugate duality, a separate proof is required.) 

Theorem I. Assume the utility function u is quasi-concave and continuous. 
Then &(g; x,u)=b(g;x,u) for all ggR”,, g#O, XEX and UE%. 

Proof. If b(g; x, u) > - co, we have u(x- b(g; x, u)g) 2~. Hence by definition 
of e, it follows that e(p, u) Sp *g- b(g; x, u)p .g. Rewriting this we have 
p. x - e(p, u) 2 b(g; x, u)p * g. Therefore 

&g; x, 4 2 MS; x, 4. 

This is clearly also true if b(g; x, u) = - co. 
To prove the reverse inequality fix x E %. Assume first that b(g; x, u) > - co. 

Let x0 =x - b(g; x, u)g. Then x,, is a boundary point of the upper contour set 
S = {x’: u(x’) 2 u, x’ E %}. S is a closed set by continuity. 

Given E >O, consider the point z E R” defined by z=xO -sg. (This point 
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Fig. 2. Construction for proof. 

may not be feasible, but that does not matter.) Clearly z$S. Let X be the 
point in S that is closest to z as measured by the Euclidean norm, and let h 
be the vector X-z. (See fig. 2.) The hyperplane defined by {x’: h. x’ = h. X} is 
a supporting hyperplane of S at X, since it is orthogonal to h. We have 
hez<h..?, h.x,,~h*Z. Hence, h.(x,,-z)>O. But using x,,-z=sg, this gives 
h*g>O. We now let P=h/(h.g), so that p’g= 1. Thus p is a feasible vector 
for the intimum operation defining b(g; x, u). 

Now for the p above, e(p, u) = p. X. Hence, 

qg; x,u)Q.x-p.2 

=p.gb(g; x,u)+p.x,-p.2 

=b(g; x,u)+p*(x,-2x), 

where in the second line we used x0=x - b(g; x, u)g. We need to bound the 
term p. (x0 - 3). 

Since h .x,,zIr.% and h.z<h.%, there is a (unique) point x1 on the 
segment joining these two which is in the supporting hyperplane. (See fig. 2.) 
We then write 

The second term on the right is zero since both x1 and X are in the 

J.Math- E 
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\ 

u = con9 

2 

Fig. 3. Case where x+ag bounded away from S. 

z+ag 

hyperplane. The first term is less than or equal to E since x0-x1 is a 
shortened version of x0 -z = sg. Using this above, we have 

6(g; x, u) 5 b(g; x, u) + E. 

Since E > 0 was arbitrary we have 6(g; x, u) 5 b(g; x, u). Combining this with 
the reverse inequality found earlier gives equality. 

We must now treat the case b(g; x, u) = -co. This means that the ray 
Q={x’:x’=x+ag, a real} does not intersect the upper contour set 
S= {x’: u(x’)zu}. Suppose first that this ray is bounded away from S. Then 
the set S-Q is convex and bounded away from zero. Let h be the vector in 
the closure of S - Q closest to 0. Then there is 6 > 0 such that h * s-h. q 2 6 
for all s E S, q E Q. In particular for any X E S there holds h * X-h. (x + ag) > 6 

for all a. This implies h .g=O. In other words, h defines a hyperplane 
containing the ray, which can be shifted outward by an amount 6 before it 
touches S. Now let po>O be a vector with p. .g= 1. Then define p=po + kh. 

(See fig. 3.) Clearly p.g= 1. We have 

e(p, 14) = inf {p . x’: x’ E S } 

=inf{p,.x’+kh.x’:x’ES} 

Therefore 

&g; x,4Sp+x---e(p,u) 
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s(po+kh)*x-e(p,,u)-kh-x-kd 

Sp,,.x--e(p,,u)-kks. 

We have e(p,, u) > - co since pO>O and 2” is bounded below. Since k was 
arbitrary, 6(g; x, u) = - co. 

Now consider the general case where b(g; x, U) = - co and the ray x + erg is 
not bounded away from S. Let z =x+ kg, for some k>O, and let X be the 
point in S closest to z. Finally let h=Z-z. The hyperplane 
H= {x’: h. x’ = h. X} is a supporting hyperplane for S at X. We have 
h.z=h*X-b for some 6~0. On the other hand, z+ag is arbitrarily close to 
S for sufficiently large ~1. Thus given E> 0, we have h*(z +org) 2 h*X--E for 
large a. It follows that h.g>O. 

Let p=h/h.g. Then peg= 1. Also e(p,u)=p.%. Hence 

6(g; x,u)~p+x-p.2 

Sp.x-p.(x+kg+h) 

5 -kp.g-p-h< -k. 

Since k was arbitrary 6(g; x, U) = - co and the proof is complete. Cl 

4.1. Relation to the distance function 

Another function, the distance function, [see Shephard (1953)] is of 
common use in microeconomic theory and it also has a dual relation to the 
expenditure function. It is worthwhile to briefly compare it with the benefit 
function. The distance function d is defined as 

d(x, u) = max (6: u(x/S) 2 u}. 

Geometrically d(x,u) is the maximum factor by which x can be reduced in 
order to reach the indifference curve determined by u. 

For pz 0, the expenditure function can be written in terms of the distance 
function as 

e(p,u)=min(p*x:d(x,u)=l}. 
XEI 

And, under appropriate assumptions, the distance function can be recovered 
as the dual of the dual by 
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d(x, u) = min {p . x: e(p, u) = l}. 
P20 

These are strong dual relations, and indicate that the distance function is 
also a natural precursor of the expenditure function. 

There are, however, important distinctions between distance-expenditure 
duality and the benefit-expenditure duality. Mathematically, the distinction is 
simply that the distance function is based on Lagrange duality, while the 
benefit function is based on a modified Legendre or Fenchel duality. [See 
Fenchel (1953).] But, from an economic viewpoint the main distinction 
between the two is traced to a difference in the method of price vector 
normalization. The distance function is defined by normalizing the expendi- 
ture of the consumer to 1. The benefit function is defined by normalizing 
prices absolutely, by p. g = 1. The advantage of the second becomes apparent 
when one considers problems involving more than one consumer. The single 
normalization of the benefit function theory can be applied to all consumers, 
while the distance function approach requires that a given price vector be 
normalized differently for each consumer. The original (primal) definition of 
the distance function as a scale factor also has no ready welfare interpre- 
tation. Hence, although there are indeed connections between the benefit 
function and the distance function, these connections are somewhat convo- 
luted. The distance function can be useful in developing relations in 
individual consumer theory. The benefit function has use in developing group 
welfare relations. 

5. Conclusions 

The benefit function is a natural generalization of the familiar concept of 
willingness to pay, but measured with respect to an arbitrary bundle of 
goods. This generalization has the advantage that, unlike a measure that uses 
a specific single reference commodity, the benefit function can be described in 
terms of the natural variables of a situation, rather than in terms of 
partitioned variables. This makes the benefit function a natural candidate for 
deeper study. This paper shows that the benefit function has desirable 
structural and continuity properties. Its strong economic interpretation and 
its duality relation with the expenditure function make it a valuable general 
tool for economic analysis - especially for welfare issues. 
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