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1. Introduction 

Although the economic and statistical theory underlying the estimation of 
systems of demand functions is well developed, very little attention has been 
paid to the problems which arise when the sample contains a significant 
proportion of observations in which expenditure on one or more goods is 
zero. For such a sample the econometric model should allow for zero 
expenditures to occur with positive probability. However, the econometric 
model used in most studies assumes that expenditures (or shares) follow a 
joint normal distribution and this does not allow for a positive probability of 

zero expenditures.’ Standard estimation methods for this model, such as 
Zellner’s two-stage estimator for seemingly unrelated regressions and the 
maximum likelihood estimator, do not take special account of zero 

expenditures, and consequently yield inconsistent estimates of the parameters. 
Indeed even if every observation containing zero expenditures on one or 
more goods was excluded for purposes of estimation, these standard 
estimators would be biased and inconsistent.’ Moreover, excluding these 
observations might significantly reduce the sample size. Regardless of 
whether or not the complete sample is used, the bias and inconsistency occur 
because the random disturbances have expectations which are not zero and 
which depend upon the exogenous variables. 

*This paper is a synthesis and extension of two previous papers (Department of Economics 
discussion papers 78-32 and 79-32). We are indebted to Dorwin Cho, Mukesh Eswaran and 
David Ryan for exceptional research assistance and to the Canada Council and the British 
Columbia Department of Labour for financial support. We are grateful to the Bureau of 
Agricultural Economics, Canberra for providing the data. 

‘See, for example, the recent survey of the systems approach to consumer demand by Barten 
(1977). 

‘Of course one could obtain the maximum likelihood estimator conditional on positive 
expenditures on all goods. This estimator is consistent and asymptotically efficient. We do not 
consider it here since we wish to use an estimator based on all observations. 

0304-4076/83/000&0000/$03.00 (P 1983 North-Holland 
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In the paper we formulate two alternative econometric models of 
consumer demand which take into account the possibility that expenditures 
on one or more goods are zero for a significant proportion of the sample. 
The first model is based upon the Kuhn-Tucker (1951) conditions for the 
maximization of a utility function subject to the budget constraint, and 
assumes that preferences are random over the population. The second model 
assumes that preferences are non-random and is an extension of a limited 
dependent variable model of the type developed by Tobin (1958) for the case 
of a single equation, and by Amemiya (1974) for a set of equations. It 
represents a non-trivial extension of this approach in that it takes account of 
the restrictions imposed by the budget constraint. Maximization of the 
likelihood functions for these models yields parameter estimates which are 
consistent, and asymptotically efficient and normally distributed. 

Our Kuhn-Tucker model is developed in the following section, which 
concludes with a discussion of a special case in which the utility function is 
quadratic. Our Amemiya-Tobin type model is discussed in section 3, which 

concludes with a discussion of the Stone-Geary utility function as a special 
case. In section 4 we report on the application of our models to meat 
consumption in Australia. Section 5 contains some concluding comments. 

2. The Kuhn-Tucker approach 

The traditional theory of consumer demand assumes that the individual 
maximizes a utility function G(x) over the set of non-negative quantities 

x=(xl,...,x& which satisfy the budget constraint uTxs 1, where 

v=(vr,.. . , IJ~)~ >0 is the vector of normalized prices (that is, ui=pJm where 
pi is the price of good i and m is income). Formally, this problem is 

H(u)rmax {G(x):uTx~ 1, x20). 

For present purposes it is assumed that G(x) is a continuously differentiable, 
quasi-concave, increasing function. 3 Following the results of Arrow and 

Enthoven (1961), the necessary and sufficient Kuhn-Tucker conditions for a 
solution are 

G,(x) -hi 5 0 5 xi, i=l,...,M, 

(2) 
uTx- 1 sos;;n, 

where 2 is the Lagrange multiplier associated with the budget constraint. 
Whenever conditions such as (2) appear (with a double inequality) they are 

‘By increasing we mean that x1 >x” implies that G(d)> G(x’). 
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taken to imply tha the two terms which have the inequality constraints, when 

multiplied together yield zero. This convention is used throughout the paper. 
Since G(x) is assumed to be increasing the consumer will spend all his 

income. Consequently, I will be positive (almost everywhere) and at least one 

good will be consumed which, without loss of generality, is assumed to be 
the first good. Thus (2) implies that G,(x)=ilu, or II= G,(x)/u,. Using these 
results the necessary and sufficient conditions for utility maximization may 
be rewritten as 

~,Gi(x)-~iGl(x)~O~Xi, i=2 M, >..., (3) 

uTx= 1. 

Conditions (3) may be interpreted as follows. If Xi>0 then UIGi(x)-uiG,(x) 
=O, that is Gi(x)/Gl(X)=Ui/U1, meaning that the marginal rate of substitution 
between goods i and 1 along the indifference curve at the solution is equal to 
the price ratio (slope of budget constraint). On the other hand, the marginal 
rate of substitution between goods i and 1 may (and generally will) be less 

than the price ratio if, and only if, good i is not consumed. 
To allow for individual differences in tastes, we assume that preferences are 

randomly distributed over the population. A particularly convenient 
assumption is to let marginal utilities consist of a deterministic (C,(x)) and a 
random (ui) component as 

Gi(X, Ui) = pi + ui, i=l,...,M, (4) 

which are consistent with the random utility function G(x, u)= G(x)+~rx 
where u=(ul,..., Us). Replacing G,(X) in (3) by Gi(x, ui) defined in (4) we 
obtain 

(U1Ui-UiU1)+[U1Gi(X)-Ui~,(X)] ZOsXi, i=2 ) ...) M, (5) 

uTx= 1. 

From the individual’s point of view the utility function G(x, u) is non- 
stochastic since his u vector is known to him, thus he obtains his optimal 
consumption vector by solving (5) for x. However, from the researcher’s 
point of view the vector u, and hence x, for each individual are random 
drawings from a population. By specifying the distribution for the u vectors 
we can calculate the distribution of the consumption vector x from (5). 

We assume that u has a joint normal distribution with zero means and 
constant covariance matrix C. Since the left-hand sides of (5) are linear in u it 
is convenient to define yi = u,ui- UiU1, i= 2,. , M, which also follow a joint 
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normal distribution with zero means and (non-constant) covariance matrix 
Q. Recognizing that the budget constraint may be used to eliminate one 
of the elements of x, say xi, and defining ji(~) E ~$,(a) - v~~~(z?-) where 
i=(x2,..., x,), (5) may be rewritten as4 

yi - $(2) 5 0 2 xi, i=2 M. >..., 

For the M goods are consumed, (6) implies 
i=2,..., M, and hence the density function for i is obtained as 

f(2) = n(j, Q) abs CJWI, 

(6) 

that yi = j&2), 

(7) 

where ji=(y2,..., y,), n(j, Q) is the normal density function for j which has 

mean zero and covariance matrix s2, and J(2) is the Jacobian of the 
transformation from j to 2. For the case where only one good is consumed, 
which as will be recalled is the first good, all M - 1 conditions in (6) are 
inequalities. Thus the probability of the event 1=0 is 

f(O)= ‘s” . . ‘s’ n(j, Q) dy, . . . dy,. 
-co -m 

(8) 

In general, if the number of goods consumed is K (taken to be the first K 

goods), the density is 

YM YX+l 
.f(x 2,...,+0,..., 0)= s ‘.. s n(y2,...,yK,YK+1,“.,Y~M,S2) 

-cc pm 

(9) 

where JK(a) is the Jacobian of the transformation from (y2, . . .,yk) to 

(x 2 ,... ,x.4 when (xk+i,..., x,)=0. Of course, if K = M then (9) reduces to 

(7) and if K = 1 it reduces to (8). It should be noted that eq. (9) is valid only if 

the transformation from (y2,. . ., yK) to (x,, , . . , xK) when (x,+i, . , ., x~)=O is 
one-to-one, that is JK(2) does not change sign over the region of integration. 
If the transformation is not one-to-one, then the integration must be 
performed separately over the sub-regions over which the transformation is 
one-to-one. 

There are M!/K!(M-K)! possible consumption patterns consisting of K 
positive quantities and M-K zero quantities. Thus there are cg= 1 M!/K!(M 

- K)! possible consumption patterns and corresponding density functions 
which’ make up the complete density function for 52. For example, when 

4The choice of the variable to eliminate is arbitrary, the first being chosen for notational 
simplicity only. 
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K = M there is just one consumption pattern with density given by (7). When 

K = 1 there are M possible consumption patterns each having density 

(actually probability) of the form given by (8). Since eqs. (3H9) are based 
upon the assumption that x1 >O, the densities for the cases where x1 =0 are 
obtained by renumbering the goods so that some other good, whose 
consumption is positive, becomes good 1. 

Given a random sample of N observations on ~2, each observation 
corresponds to just one of the cfZ1 M!/K!(M- K)! components of the 
complete density function. The sample likelihood function may then be 

expressed as 

L(zl-,. . . ..Q= fi f(&), (10) 
i=l 

where ii is the ith observation on 2. Given a functional form for the utility 
function G(x, u), the parameters of this utility function and the covariance 
matrix C can be estimated by maximizing the likelihood function (10). These 

maximum likelihood estimates will be consistent, and asymptotically efficient 
and normally distributed. While the likelihood function involves the 
evaluation of multiple integrals under the multivariate normal density 
function, these calculations are feasible for small M using the approximation 
formulae of Dutt (1976). 

A functional form that is particularly convenient for the empirical 
implementation of the model is the quadratic utility function that has been 

discussed by Allen and Bowley (1935) Houthakker (1961) Wegge (1968), and 
others. In the following sections we consider this functional form and, for the 
case where M = 3, present empirical results. The quadratic utility function is 
general in the sense that it is a ‘flexible functional form’. Like other flexible 
functional forms it is not globally quasiconcave and non-decreasing, but this 
is not a serious disadvantage since it can satisfy these conditions over a 
subset of the commodity space, which is all that is required in empirical 
applications. As will be discussed below the Engel curves are piece-wise 
linear, but we feel this restriction is outweighed by the simplicity in empirical 
implementation. An alternative more commonly used (but also more 
restrictive) functional form that could be readily implemented in a similar 
fashion is the Stone-Geary utility function. 

Special case: The quadratic utility function 

The quadratic utility function with random components added to the 
coefficients of the linear terms is 

G(x, U) = a,, + ~ (ai, + ui)xi +3 ~ 
i=l 

E ~ijxixj. 
i=l j=l 

(11) 
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For this functional form the Kuhn-Tucker conditions corresponding to (6) 
are 

i=2 M, ,...> (12) 

where 

and yi-u,ui-via1 as before. 

It is evident from (11) that our model can be interpreted as a type of 
random coefficients model in which the coefficients a,, + ui of the xi consist of 
a deterministic part ui, and a random component ui.5 Since u is assumed to 
have an M-variate normal distribution with constant covariance matrix C, 
the coefhcients of xi in the utility function have means ui, and constant 
covariance matrix C. For the purpose of identification, a normalization of the 
parameters of the utility function is required. A convenient normalization is 

to require that CE i (ai, + ui) = 1 which, since Eu = 0, implies 1: 1 Uio = 1 and 
CE i ui = 0. Hence the parametric restrictions implied by our normalization 

are 

1 and ITC=O, (14) 

where lr=(l,..., 1). Finally, we note that the y:s have a multivariate normal 
distribution with means zero and covariances given by 

wij-EE(yiyj)=U:aij+UiUja,,-Uu,UjOli-U,Uia,j, i,j=2 ,...,M. (15) 

The empirical results presented below are for the case where M =3, which 
we now consider in more detail. There are seven possible consumption 
patterns, one with all xis positive, three with one xi positive, and three with 
two xI)s positive. The density for an observation with all xi’s positive is given 
by (7) where yi= b,, + bizx2 + bijx, =Y,(i), i = 2,3, and the Jacobian is 

J=W,,-b,,bx. This Jacobian is independent of i and hence the 
transformation from j to f is one-to-one. When x2 =x3 =O, yi($= bio, and 

‘An alternative interpretation is that the individual’s utility function is given by (11) where 
u=O, that is G(x,O), and the y,‘s introduced in (12) represent random errors of maximization, The 
latter create a distinction between the observed consumption vector and the consumption vector 
which maximizes G(x,O). For the data sets used below, it is not possible to distinguish between 
these interpretations since they are observationally equivalent. 
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hence density (8) reduces to 

(16) 

When x1 =x2 =0 or x1 = xj =O, similar expressions are obtained by 
renumbering goods. When two goods are consumed, the density is obtained 
by integrating under a univariate normal density function. For example, 
when x,,x,>O and xg =O, the density corresponding to (9) with K =2 and 
M=3 is 

P3 

./XX,, 0) = s 4L Y,, Q) abs CJWI dy, -00 

(17) 

where F denotes the normal distribution function, vi = bi, + bizxz and the last 

expression is obtained by expressing the joint normal density as the product 
of the marginal density for y, and the conditional density for y, given y,, 
and carrying out the integration. When x1, xj > 0 or x2, x3 > 0 the densities 
may be obtained by renumbering goods. 

3. The Amemiya-Tobin approach 

Following the customary approach to the estimation of systems of 
consumer demand equations, we assume that the consumer attempts to 
maximize a utility function subject to the budget constraint. The utility 
maximizing shares are denoted si(u), i= 1,. . . , M, where v is the vector of 
normalized prices. These deterministic shares are assumed to lie between zero 
and unity. However, due to errors of maximization by the consumer, errors 

of measurement of the observed shares, and other random disturbances 
which influence the consumer’s decisions, the observed shares will not 
coincide with the deterministic shares. The usual approach taken to 
incorporate these stochastic elements is to add normal disturbances to the 
deterministic shares implying that the ‘shares’, so constructed, are normally 
distributed about the deterministic shares. However, there is nothing in this 
formulation to ensure that these ‘shares’ lie between zero and unity. To avoid 
this difficulty, we assume that the observed shares follow a truncated 
multivariate normal distribution. By following this procedure we not only 
respect the constraint that shares lie between zero and unity, but also 
provide for a pile-up of density at the boundary. 

For the purpose of constructing the truncated normal density function, a 
vector y* =(y:, . . , yg) of latent random variables is introduced. Since the 
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shares sum identically to unity their joint density function is degenerate and 
so we can deal with the joint density function over any M- 1 shares. 
Accordingly it is assumed that (~7,. . . , y&J is distributed normally with 
mean vector p = [s,(u), . . . , s,+_ l(v)] and positive definite covariance matrix Sz. 
Then y$ = 1 - cE”=; ’ y: is normally distributed. The vector y* = (yT, . . . , y&) 
will not necessarily satisfy the requirement of shares that they be between 
zero and unity, though they clearly sum to one. Following the idea behind 
Tobin’s limited dependent variable model, we map the density lying outside 
the unit simplex, 

M-l 

(Y;“, . . . . Y&-,):yT )...) y&,, l- 1 y:zo ) 

i=l 

onto its boundary by defining the vector of shares y = (yr, . . . , yM) in terms of 
y* as 

Yi = O, if y?sO, 

Yi=Y* C Yj*, if $>O, 
I 

(18) 

where 

jeJ 

J={j:yi*>O}n(1,2 ,..., M}. 

Let there be K shares that are positive with the remaining M-K shares 

equal to zero and let the categories be ordered so that the positive shares 

occur first. Then the density for y = (yr, . . , y,, 0, . . , 0) is 

* 
~K+l....,~~-l)J(~)d~$-l...d~~+ldyT, 

lZK<M, 

=n(YT,Y:,...,Y&-l)> K=M, (19) 

where 

EK + 1= 1 - Cal(Y:) + az(Y:) + . . . + aK(YT)l, 

j-l 

aj = CI K+l- c Yk*> j=K+2 ,..., M-l, 
k=K+l 

(20) 

aj(YY) e YY(YjlY 112 j=l >..., K 
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and where n(y:, . . ., y&_ 1) is the joint normal density function for the first 

M - 1 categories and J(y) is a measure of distance.6 Since there is always 

at least one positive share we can, without loss of generality, assume that the 

first is positive in which case the functions aAyT) are well defined. Also if 
K <M there is at least one share which is zero so we can, again without loss 
of generality, assume that the last share is zero, 

It should be noted that in the case where there are K positive shares and 
M-K zero shares there are M!/K!(M -K)! combinations to consider. Since 
any M - 1 of the yT’s have a joint normal distribution with parameters 
defined in terms of p and 0, we can always arrange the shares so that the 
positive ones occupy the first K positions. Thus (19) applies to each of these 
combinations where the normal density n is appropriately defined for each 
combination. 

The likelihood function for a random sample of N observations is 

L= fi f(Yil~~~~~YiM)~ 
i=l 

(21) 

where f(yi,, . . . , yiM) is defined by (19). Maximization of (21) yields maximum 

likelihood estimates of the utility function (or, equivalently the share 
functions) and covariance parameters. 

Several points should be noted about this formulation of the density 
function for shares. First, although there may be ways other than (18) to 
allocate the density for y* to the feasible region S, the one we have chosen is 
both simple and has the property that the resulting density function is 

independent of which set of M - 1 y*‘s is used in its derivation. Second, 
because we take account of the budget constraint (the shares sum to one) the 
model is not just a simple extension of Tobin’s limited dependent variable 
model for M >3.’ Finally, if we had chosen to estimate a system of 
expenditure equations rather than share equations, it is evident that the same 

‘Since the joint normal density function for yr, , y,$ is degenerate, the calculations involved 
in (19) may be undertaken in any (M-1)-dimensional subspace. If the calculations are 
undertaken in y:, , y&_ 1 space, where yM =0, the function J(y) is a measure of distance along 
the line defined parametrically by cr,(y:), .i= I,. , K, and is 

To ensure that the last (Mth) observed share is zero, a change of space is required in order to 
apply (19). If the density function f(y) is to be independent of the space in which the calculation 
is done (and hence integrate to unity), the function J(y) must be adjusted to take account of the 
change in space. This is because the distances between corresponding points on corresponding 
lines in different spaces will be different. However, it should be noted that these distance 
measures J(y) depend only on the observed y vectors and not upon the parameters of the model, 
hence they can be ignored in the likelihood function. 

‘However, when M = 2 the model is a simple extension of Tobin’s limited dependent variable 
model to the case of an upper and lower bound. 
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type of density function would have to be employed, the only difference 

being that the upper bound on the sum of expenditures would vary from 
individual to individual. 

This model, like the Kuhn-Tucker model, generates a density for 
consumption (or expenditure shares) which respects the non-negativity and 

budget constraints and which allows for a pile-up of density whenever the 
consumption of one or more goods is zero. There is a difference in the 
resulting densities for the two models, however, because of a difference in the 
way the stochastic element is incorporated. In the Kuhn-Tucker model, the 
consumption vector for an individual is obtained by constrained 
maximization of a utility function, and may involve zero consumption of one 
or more goods. Randomness is incorporated by supposing that the 
parameters of the utility function are randomly distributed over the 
population. In the Amemiya-Tobin model, individuals have the same utility 
function. An individual’s observed consumption vector is the sum of the 
utility maximizing consumption vector plus a vector of random disturbances 
which have a truncated distribution. This truncation allows the observed 
consumption vector to involve zero expenditures on one or more goods. 

#Special case: The Stone-Geary utility function 

The Stone-Geary utility function is given by 

G(~)=~fi~ (Xi-bi)Pi, xi > bi, jl ai=l. (22) 

For this functional form the demand equations are given by the familiar 

Linear Expenditure System (LES), which in share form is 

si~“ixi=uibi+ai(l-~~~u,h,), i=l,...,M. (23) 

As discussed above these deterministic shares are assumed to lie between 
zero and one. Addition of a multivariate normal disturbance to (23) yields a 
vector of latent variables y*, 

Yf=ai~i+ai(l-~~~~~b,)+~i, i=l,...,M. 

These y*‘s are used to construct the truncated normal density, that is, the 
observed shares (y,) are defined in terms of the y: according to eq. (18). 

Before proceeding with the estimation of these models we consider briefly 
the possibility of an alternative approach involving the indirect utility 
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function. In many recent empirical studies the approach has been to specify 
an indirect utility function 

E?(u) = max (G(x): uTx 5 l), 
X 

in which the non-negativity constraints in (1) are ignored. 
identity the demand functions may be obtained from (25) as 

x = t?“(U)/lm”(U). 

(25) 

Using Roy’s 

(26) 

Of course I?(u) corresponds exactly with H(u) when all the x’s are positive, in 
which case this procedure is appropriate. However, if some of the x’s given 
by (26) are negative then R(u) is inappropriate. At first glance, it might 

appear that this difficulty could be resolved by setting the negative x’s to 
zero. If this were the case, the model would become 

xi = fii(u)/uTfi,(u), if RHS > 0, (27) 

if RHSSO, 

where it is assumed that the demand functions are random, due for example 
to random preferences. This is a multivariate Tobit model of the type dealt 
with by Amemiya (1974). 

The difficulty with setting the negative x’s to zero is that the budget 
constraint would no longer be satisfied and the demand functions for the 
remaining x’s would not be given by (26), but would have to be obtained 
from a new utility function conditional upon some of the x’s 
zero. we conclude that the utility approach is 

for dealing with non-negativity 

Application to meat consumption 

In this section we discuss an application of the econometric model outlined 
above using a survey of household meat consumption carried out by the 
Bureau of Agricultural Economics in Australia (1970). The survey contains 
information on the purchases of various types of meat by each household in 
the sample, together with information on the characteristics of the household 
members. In the survey, which was undertaken in Melbourne in 1967, the 
expenditure information is based upon the recall method and covers a one- 
week period. Because of the short survey period there are categories of meat 
expenditures involving no purchases, even when the data are aggregated into 
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three broad groups - beef, lamb and other meats.8 Indeed, meat expenditure 
is positive for all three meat groups in only 66 percent of households in the 
survey. The econometric model developed in sections 2 and 3 allows us to 
estimate an economic model of meat consumption using all observations in 
the samples. 

Each household is assumed to allocate a predetermined level of total meat 
expenditure m among the three categories - beef, lamb and other meats - 
by maximizing a utility function with quantities consumed as arguments, 
subject to the budget constraint that the sum of expenditures is rn.’ Since all 
households within the survey live in the same city, we assume that they face 
the same prices. Furthermore, we choose units of measurement such that 
prices of the three goods are unity, in which case xi is expenditure on good i 

and vi = v2 =v3 for each household in the sample. A consequence of the 
absence of price variability in the sample is that not all of the parameters of 
the utility functions can be identified. For the quadratic utility function a 
convenient normalization which achieves identification of the remaining 
parameters is 

aij = 0, .i#i, i,j= 1,2, 3, 

(281 
a 33= -1. 

This leaves seven parameters to be estimated, namely or, rag, plZ, alo, Q,, 
a,, and a,,. Of course, since there is no price variability in the sample we 

can only identify the response of quantities to changes in total expenditure 
on meats, m. The resulting Engel curves, relating the xI)s to m, are linear in m 

for each combination of goods purchased, and are given by 

(29) 

*Ideally we would like information on the consumption of meat in this period, and there will 
be some error involved in using reported purchases if these two do not coincide. Unfortunately 
there is no information on the quantity of meat that individuals are adding to or withdrawing 
from their freezers. Thus to the extent that these data are used at all in the estimation of 
preferences the procedures outlined in the text would appear to be the most appropriate. 

In addition to this problem there is the possibility that a week is too short a period to permit 
the revelation of preferences. For the Amemiya-Tobin approach this does not appear serious 
since any randomness induced by the short period is included in the disturbance term. For the 
Kuhn-Tucker approach the consequences may be more serious since we are assuming non- 
stochastic utility-maximizing behaviour. 

9To allow for the possibility that m is endogenous, the model would have to be extended to 
include another category of expenditure consisting of ‘non-meats’, together with the assumption 
that total expenditure on meats and non-meats is exogenous. However, we have not pursued this 
approach since the information required was incomplete. 
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where si= l/aii/xj,I l/ajj is the marginal budget share for good 

b,. The Engel curves are again linear in m and are given 

by 

xi=bi-(aiISaj)~bj+(ai/bai)m. i El, 

where as before I is the set of subscripts for those goods which are 
consumed. 

Non-random differences in preferences between households are taken into 
account by assuming that the a,, parameters of the quadratic utility function 
and the bi parameters of the LES are linear functions of a vector of 
household characteristics. Thus, for example, for the quadratic, 

5 

a,, = cio + C cijzj, 
j=l 

and for LES, 

hi-&, + 2 dijzj, 
j= 1 

where zj is the jth characteristic (j= 1,. . . , J) and the c’s are parameters to be 
estimated. Because of the restriction c”=I a,,= 1 for the quadratic, the c 
parameters have the constraints 

1 and i cij= 0 for all j, 
i=l 

“Thus since we have no price variation we could have applied the Kuhn-Tucker procedure 
directly to the Ston4eary utility function and would have obtained the same estimates of the 
Engel curves, but defined in terms of the parameters appearing in (30) below. The reason for not 
doing so is to illustrate the procedure to follow, when price variation does exist, in estimating a 
more general utility function than the Stone-Geary, namely the quadratic. 
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while for the LES we have 

i&,=0 and idij=O for allj. 
1 1 

Given the above expressions for a,, and bi in terms of the z’s, it is evident 
that the Engel curves described by (29) and (30) have exactly the same 
structure, apart from the parameterization of course. That is, the marginal 
budget shares are constant (for any given combination of goods purchased) 
and the intercepts are linear functions of the household characteristics (z’s). 
Thus despite the different parameterizations the non-stochastic structure of 
the models based on the quadratic and Stone-Geary utility functions is the 

same. 

The following five characteristics are hypothesized to affect household 

preferences for meat: 

z1 =number of individuals in household 13 years or older; 
z2 = number of individuals in household younger than 13 years; 
z3 = 1 if the household head is a Roman Catholic, 

= 0 otherwise; 
z,=l if the household head was not born in Australia or New Zealand, 

= 0 otherwise; 

z5 = l/(R + 1) if z4 = 1, where R is the number of years of residence, 
=o if zd = 0. 

Variables z1 and z2 are intended to reflect the influence of family size and 
age composition upon the pattern of household meat consumption. Variables 
z4 and z5 are introduced to take account of possible differences in tastes 

between Australian born families and others. Variable z4 allows for a 
permanent difference in tastes while z5 allows for the possibility that the taste 
patterns of non-Australians may alter over time. 

After eliminating some households due to lack of complete information the 
sample consisted of 790 households. Further details regarding the data may 
be found in appendix A. 

We have used the likelihood ratio statistic to test the significance of the 
demographic variables. Separate tests of the null hypothesis that a group of 
variables do not affect the shares of meat expenditure were carried out for 
the following groups: (a) family size and age composition (z,, z,), (b) religion 
(z,), and (c) country of birth and length of residence (z,, z5). The null 
hypothesis of no effect was rejected at the 1% level of significance for each 
group of variables, for both estimation procedures. Thus all the demographic 
variables are significant determinants of the pattern of meat consumption, 
and are therefore retained in the ensuing analysis. 
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The effects of the demographic variables upon the consumption of beef, 

lamb and other meats for each consumption pattern in which more than one 
meat type is consumed are presented in table 1 for the Kuhn-Tucker method 
and table 2 for the Amemiya-Tobin appr0ach.l’ It should be recalled that 
both of these methods yield piece-wise linear Engel curves and thus the 

results may be readily compared. 

Table 1 

Marginal budget shares and demographic effects - Kuhn-Tucker approach.” 

&i,/dm axiidz , 2Xi/dZ, dX,/&, ax,laz, ax;/az, 

x,, x2, x3 positwe 

XI 0.409 
(0.018) 

x2 0.188 
(0.010) 

X3 0.403 
(0.013) 

x,, xz positioe 

XI 0.686 

X2 0.314 
(0.019) 

x1, xj positive 

XI 0.504 

X3 0.496 
(0.018) 

x2, x3 positive 

X2 0.3175 

X3 0.6825 
(0.013) 

0.036 
(0.053) 

0.076 
(0.038) 

-0.112 

(0.044) 

- 0.040 

0.040 
(0.039) 

0.074 

- 0.074 
(0.044) 

0.087 0.112 -0.143 - 0.406 

- 0.087 -0.112 0.143 0.406 
(0.031) (0.027) (0.078) (0.089) 

0.052 0.351 
(0.044) (0.123) 

0.096 -0.254 
(0.033) (0.092) 

-0.148 - 0.097 
(0.037) (0.106) 

-0.049 0.285 

0.049 -0.285 
(0.033) (0.090) 

0.100 0.223 

-0.100 -0.223 
(0.037) (0.105) 

0.375 - 1.770 
(0.139) (0.797) 

- 0.525 - 0.465 
(0.105) (0.619) 

0.150 2.235 
(0.119) (0.674) 

0.478 - 0.238 

- 0.478 0.238 
(0.103) (0.605) 

0.111 - 2.005 

-0.111 2.005 
(0.119) (0.669) 

- 1.027 

1.027 ’ 
(0.518) 

“The x()s and m are measured in dollars per week. Standard errors are contained in 
parentheses. Since marginal budget shares sum to unity and demographic effects sum to zero, 
when only two meat types are consumed the standard errors on these shares and effects are the 
same for both meat types. 

Although the deomgraphic variables are significant, as discussed above, 
they do not appear to have a very large effect upon the consumption of the 
three meat types. Consider first table 1. When all three meat types are 
consumed an increase in the number of household members thirteen years or 
older, zl, increases beef consumption by 3.6 cents, lamb consumption by 7.6 
cents and consequently reduces the consumption of other meats by 11.2 

“The parameter estimates on which these are based appear in the appendix. Since these 
values depend on the normalizations chosen to identify the parameters they are not of much 
interest in themselves. The estimates in tables 1 and 2 are of course independent of these 
normalizations. 
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Table 2 

Marginal budget shares and demographic effects - Amemiya-Tobin approach.” 

&,/am axiiaz, axi/aZ, dxilaz, axijaz, dxJ&, 

x,, x2, x3 posrtwe 

x1 0.371 
(0.018) 

x2 0.244 
(0.018) 

x3 0.385 
(0.016) 

x,, x2 posltlve 

x1 0.603 

X2 0.397 
(0.026) 

x,, x3 positive 

x1 0.49 1 

x3 0.509 
(0.019) 

x2. x3 positive 

x2 0.388 

x3 0.612 
(0.023) 

0.114 
(0.03 1) 

0.012 
(0.934) 

-0.126 
(0.032) 

0.038 

- 0.038 
(0.03 1) 

0.120 0.054 

-0.120 - 0.054 
(0.026) (0.026) 

0.056 

- 0.056 
(0.028) 

0.038 
(0.03 1) 

0.032 
(0.034) 

-0.070 
(0.030) 

- 0.004 0.072 0.112 

0.004 -0.072 -0.112 
(0.030) (0.060) (0.072) 

0.047 -0.126 -0.160 

- 0.047 0.126 0.160 
(0.028) (0.054) (0.064) 

-0.007 
(0.066) 

-0.123 
(0.066) 

0.130 
(0.058) 

- 0.068 -0.059 -0.601 

0.068 0.059 0.601 
(0.053) (0.063) (0.5 15) 

0.024 
(0.080) 

-0.169 
(0.079) 

0.145 
(0.069) 

-0.747 
(0.652) 

0.298 
(0.659) 

0.449 
(0.566) 

- 0.476 

0.476 
(0.595) 

0.009 

- 0.009 
(0.538) 

“See table 1. 

cents. A somewhat surprising result is that Catholics (z,= 1) on average 
spend 35.1 cents more on the consumption of beef, 25.4 cents less on lamb, 
and 9.7 cents less on other meats (which includes fish) than do others 
(z3 =0).‘2 

Variable zq allows households with Australian born heads to have different 
expenditure patterns than other households, while variable zg permits an 
adjustment over time of expenditure patterns of households with non- 
Australian born heads.13 If 8xi/az, =0 then differences in the expenditure 
patterns of these two groups persist over time, whereas if 8xi/8z,=0 the 
initial differences decrease (asymptotically) as years of residence increase. To 
interpret the results, we consider first the case of a household whose head is 
non-Australian and who resided in Australia less than one year. With years 
of residence equal to zero, zs = 1 and so axi/az, + axi/az, is the difference in 
the expenditure for category i between Australian and non-Australian headed 
households. The results indicate that, when all three meat types are 

‘*Approximately 20% of the expenditure on the other meats category consists of expenditure 
on seafood. 

13Recall that z,=O for a household with an Australian born head and z5 = l/(1 +R) for other 
households where R is years of residence in Australia of the household head. 
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consumed, non-Australians have an estimated expenditure for beef which is 

$1.39 lower than Australians, $0.99 lower for lamb, and $2.39 higher for 
other meats. As years of residence increases, zg declines towards zero so that 
axi/az, is the limiting difference between the expenditures for households 
with Australian born heads and others for category i. The ?x,/Zz, estimates 

for beef, lamb and other meats are 0.375, -0.525 and 0.150, respectively. 
This means that immigrants reduce their expenditure on other meats and 
increase their expenditure on beef and lamb as years of residence increase, 
and eventually spend more on beef but still less on lamb than do households 
with Australian born heads. 

Table 2 may be interpreted in a similar manner, but rather than discuss it 
in detail we instead make a few general comparisons with table 1. Consider 
first the signs of the significant coefficients in table 1 (using an asymptotic t- 
value of 2 as a rough measure). Of the eighteen significant coefficients sixteen 
have the same sign as the corresponding coefficient in table 2, indicating that 
the two procedures give the same results in terms of the direction of effects. 
Second it is interesting to note that the absolute values of all but one of 
these sixteen coefficients are lower in table 2 than in table 1 although it is 
not clear why this occurs. 

Tables 1 and 2 also present estimates of the marginal budget shares for 
each of four consumption patterns. The estimated budget shares are of the 

same order of magnitude in each table but differences between them are large 
relative to their estimated standard errors.14 For the ‘average household’, 
that is with the zi’s set equal to the sample means and with utility function 
parameters equal to the estimates provided in appendix B, we have 
calculated the Engel curves relating expenditure on each meat type to total 
meat expenditure m. I5 These Engel curves are presented in figs. 1 and 2 
(corresponding to tables 1 and 2). 

Consider first fig. 1. For m less than $0.44, lamb (good 2) is the only meat 
type consumed and its marginal budget share is clearly unity. For m greater 

than $0.44 but less than $0.98, both beef and lamb are consumed with 
marginal budget shares estimated to be 0.686 and 0.314 respectively. If m 
exceeds $0.98 then all three meat types are consumed with marginal budget 
shares of 0.409, 0.188 and 0.403. While fig. 1 refers to the ‘average 
household’, it is evident that individual households with different values for 
the zi variables will have different Engel curves, involving a different sequence 
of consumption patterns as m increases, and with the switches from one 
pattern to another occurring at different levels of m. 

Fig. 2 differs from fig. 1 in that beef is now consumed by the average 

140f course this is not a rigorous test of significance. 
“For a detailed account of the derivation of Engel curves, and of price effects upon demands, 

for a quadratic utility function using a quadratic programming algorithm, see Wegge (1968). 
Since there is no price variation in our data, our calculations are much simpler than Wegge’s. 
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0 
0 0.44 0.98 2 3 4 5 6 

Fig. 1. Kuhn-Tucker approach. 

I I I I I I 

,<I 0 0.71 1 2 3 4 5 6 

mw 

Fig. 2. Amemiya-Tobin approach. 

household at very low levels of m, with the marginal budget shares for beef 

and lamb being 0.686 and 0.314, respectively. For m above $0.71 all three 
goods are consumed with marginal budget shares for beef, lamb and ‘other’ 
being 0.371, 0.244 and 0.385. 

The marginal budget shares are very close to those given in fig. 1. Since 
the mean sample value for m is $5.64, the Engel curves obtained from the 
two different methods are similar over a wide range of sample observations. 

5. Conclusion 

In this paper we have formulated two econometric models of consumer 
demand which explicitly allow expenditure on one or more goods to be zero 
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for a significant proportion of a random sample. The model which we refer 
to as the Amemiya-Tobin type corresponds more closely to the traditional 

approach to econometric estimation of systems of demand functions. An 
individual’s observed consumption vector is assumed to be the sum of the 
utility maximizing consumption vector, obtained without regard to non- 
negativity constraints, and a vector of random disturbances which have a 
truncated distribution. This truncation allows the observed vector to involve 

zero expenditures on one or more goods. 
Our other model is based on the full set of Kuhn-Tucker conditions for the 

maximization of the utility function subject to the budget and non-negativity 
constraints. Consequently zero consumption on one or more goods is 
possible. By assuming that preferences are random over the population the 
density function for the consumption vector of an individual drawn from the 
population can be derived using the Kuhn-Tucker conditions directly. 

Both of our models have been estimated by the method of maximum 
likelihood for a sample of data on Australian meat consumption. As 
discussed in the text the results are not very sensitive to the method used. 
Since both methods involve the same degree of complexity in terms of 
estimation technique (for example evaluation of the bivariate normal 
distribution function) this provides no basis for making a choice between 
them. On theoretical grounds, however, the Amemiya-Tobin approach 
suffers from the fact that it requires an arbitrary assumption about the 
allocation of density to the feasible region [eq. (18)]. As discussed in the text 
our method is simple and results in a density that is independent of which 
goods are used in its derivation; nevertheless, this arbitrariness still remains. 

The Kuhn-Tucker approach, on the other hand, does not involve any 
arbitrary assumptions of this kind, and thus on these grounds may be 
considered preferable. 

The models developed in this paper should prove useful in the analysis of 
consumer demand when the sample contains a non-trivial proportion of 
observations for which the consumption of one or more goods is zero. For 
such samples the traditional econometric approach to the estimation of 
consumer demand systems is inappropriate. In addition to the survey data 
analyzed in this paper, there are an increasing number of household surveys 
of expenditures to which application of our model may be appropriate. 

In addition the models are applicable to the analysis of family labour 
supply. Under the assumption that the household maximizes a utility 
function with consumption of goods, hours of work of the husband, and 
hours of work of the wife as arguments then it may be the case that either 
the husband or wife or both may choose not to work. Indeed, there exist a 
number of data sets, such as the National Longitudinal Survey and the 
University of Michigan Survey Research Center’s Panel Study of Income 
Dynamics, in which there is a significant proportion of wives (and a small 
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proportion of husbands) who do not work. Our models may be easily 
reformulated to apply to these samples. 

Finally, although our empirical example involves only three goods the 
theoretical analysis is presented for an arbitrary number of goods. 
Nevertheless computational time will increase rapidly as the number of 
goods increases, hence applications of these methods will likely have to be 
restricted to systems with a small number of goods. 

Appendix A 

Summary statistics for Melbourne sample 

s1 s2 s3 m Zl z2 z3 z4 R 

Mean 0.435 0.437 0.364 5.64 2.65 0.88 0.26 0.33 18.8 
Standard 
deviation 0.217 0.215 0.197 3.18 1.12 1.22 0.44 0.47 15.8 

Number of households in each expenditure pattern 

Positive expenditures on goods 

1,2,3 2,3 1,3 1,2 1 2 3 Total 

Number 520 53 115 63 18 14 7 790 

Notes 

(1) 

(2) 

For any household si is defined as expenditure on the ith meat 
category divided by m. The mean and standard deviation for any si 
value is calculated after excluding observations for which expenditure 
on that si value is zero. Hence the sum of the average meat shares 
over the three categories is not equal to one. 
The indices 1,2,3 refer to three meat categories, beef, lamb and 
‘other’, respectively. The beef category 1 comprises beef, veal, and beef 
sausage; in terms of the Bureau of Agricultural Economics (B.A.E.) 
codes it is defined as 101-115, 201-209 and 603. The lamb category 2 
comprises lamb and mutton; in terms of the B.A.E. codes it is defined 
as 301-313 and 401-413. The ‘other’ category 3 comprises pork, ham, 

bacon, poultry, game, seafood, offal, small goods (e.g. frankfurters), 
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sausage (except beef sausage); in terms of the B.A.E. codes it is defined 
as 501-509, 801-806, 1101~1107, 1109, 1110, 1201-1204, 1208, 1211- 
1215, 701-709, 901-903, 601, 602 and 604. The items in these three 

meat categories include fresh, frozen and ready-to-eat (cooked) meat 
products only, all canned products are excluded (also, pet food is 
excluded as a meat product). 

Appendix B 

Estimates of meat preference parameters 

Kuhn-Tucker approach 

Parameter Maximum likelihood estimate Asymptotic standard error 

01 0.163 0.009 
02 0.186 0.010 
P12 -0.736 0.022 
Cl0 0.288 0.017 
c20 0.405 0.020 
all - 0.985 0.072 
az2 -2.149 0.126 
Cl1 0.0007 0.006 
c21 0.013 0.007 
Cl2 0.0015 0.005 
c22 0.017 0.006 
Cl3 0.045 0.015 
c23 - 0.045 0.016 
Cl4 0.057 0.017 
c24 - 0.093 0.019 
Cl5 -0.157 0.095 
c25 - 0.083 0.109 

fJ3 0.129 0.005 
P13 - 0.208 0.066 
P23 - 0.509 0.048 

Notes 

(1) For the purposes of estimation the xi)s and total expenditure m are 
measured in units of $10 per week. 

(2) Standard errors are based on numerical derivatives. 



Amemiya-Tobin approach 

Parameter Maximum likelihood estimate Asymptotic standard error 

g1 0.291 0.008 
g2 0.289 0.008 
P12 -0.618 0.024 
d 
10 

-0.014 0.004 
d 
20 

0.012 0.005 
a1 0.371 0.018 
a2 0.244 0.017 
d 
11 

0.011 0.003 
d 
21 

0.0012 0.003 
d 
12 

0.0038 0.003 
d 
22 

0.0032 0.003 
d 
13 

- 0.0007 0.007 
d 
23 

-0.012 0.007 
d 
14 

0.0024 0.008 
d 
24 

-0.017 0.008 
d 15 - 0.075 0.065 
d 
25 

0.030 0.066 

(73 0.253 0.007 
P13 - 0.444 0.031 
P23 - 0.430 0.032 

See Notes (1) and (2) above. 
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