Academic Background
First Experience with AAC
ACTS-KC

Augmentative and Alternative Communication in the Schools: Leadership and Access - Kansas City

ACTS-KC provides KU speech-language pathology students with a two year collaborative field experience with a student who uses AAC in the general education classroom and his/her general education teacher. Each month students support an AAC user in the general education classroom for 12 hours and spend 3 hours with the student in non-academic settings.

ACTS-KC offers seven courses related to augmentative and alternative communication that supplement the student's graduate program.

- Introduction to AAC
- AAC in the Schools: Assessment and Intervention
- Clinical Practicum in AAC
- Seminar in Multicultural Issues: Assessment
- Seminar in Multicultural Issues: Intervention
- Seminar: Issues and Research in AAC
- Technology Laboratory
- Advocacy and Leadership
- AAC and Literacy

ACTS-KC is a project for graduate students in speech-language pathology interested in:

- learning strategies for improving communication and education of students using augmentative and alternative communication (AAC) systems in general education settings
- collaborating with general education teachers, families, and other important individuals in the students' lives
- learning to provide supports in a manner that is respectful of the unique cultural and economic background of each classroom and family
- Students also have the opportunity to participate in special projects with educators and families.

As a part of their graduate program, students complete a research project or thesis related to individuals who use AAC.
Past:

Present:
• Spanish-English dual language developmental trajectory and linguistic interplay for Spanish-English dual language learners (DLLs): A linear growth model for a continuous outcome with time-invariant and time-varying covariates
• The Dimensionality and Criterion Validity of the Sentence Repetition Subtest of the Bilingual English-Spanish Assessment (submitted for ASHA 2017)
• Differential Item Functioning between Spanish monolingual and Spanish-English bilingual children on the Test de Vocabulario en Imagenes Peabody (TVIP)
• Word Study: Morphological Awareness Curriculum Development for English Language Learners (FCRR, REL)

New Idea:
• Multilevel Modeling/Meta-analysis of SCDs in Adapted Word Reading Instruction for Students with CCNs
Self-determination is a key outcome of literacy instruction (Ruppar, 2014)

[Image of blackboard with text: LITERACY IS OPPORTUNITY
LITERACY IS EMPOWERMENT]

[Link to YouTube video: https://www.youtube.com/watch?v=MRZxZsMd5jw]
Communicative Independence

- Bolsters language development
- Increases competency of AAC system
- Increases social participation
- Increases quality and effectiveness of face-to-face interactions
- Writing allows for novel expression and less restrictions
- Increases career prospects

Benefits of Literacy Acquisition for Individuals with CCN

Light & McNaughton (1993); Koppenhaver, Coleman, Kalman, & Yoder (1991); Harrison-Harris (2002)
Figure 1. The “triangle” model of Seidenberg and McClelland (1989). The implemented model examined how phonological codes are computed from orthography. The present research examined processes involved in computing semantic codes from orthography, given the availability of both direct (orth→sem) and phonologically-mediated (orth→phon→sem) pathways.
Models of Reading

Scarborough’s Reading Rope (2001)

**Language Comprehension**
- Background Knowledge
- Vocabulary Knowledge
- Language Structures
- Verbal Reasoning
- Literacy Knowledge

**Skilled Reading:**
fluently executed and coordinated word recognition and text comprehension.

**Word Recognition**
- Phonological Awareness
- Decoding (and Spelling)
- Sight Recognition

Reading is a multifaceted skill, gradually acquired over years of instruction and practice.

Component skills of reading comprehension and their structural relations

Kim (2016)
Presentation Agenda/Goals

1. Describe constructs and provide brief overview of theoretically based research need
2. Review of relevant high quality adapted literacy intervention studies for students with CCN
3. Describe elements of proposed research study and associated challenges/concerns questions and seek feedback
4. Seek feedback, brainstorm, and engage in discussion/collaboration to strengthen research design and feasibility of implementation
Future Efficacy/Pilot Study

Research Question:
What is the effect of an adapted Spanish emergent reading intervention for school-age English learners with complex communication needs (CCN) from Spanish-speaking homes?
Key Elements

- Emergent literacy intervention
  - Adapted
  - Evidence Based
  - Spanish
- Students with CCN
  - School-age
  - English learners (ELs)
  - From Spanish-speaking homes
Emergent Literacy

- Knowledge and skills in domains such as letter knowledge, letter-sound correspondences, print awareness, phonological/phonemic awareness, morphological awareness, orthographic awareness, and familiarity with the basic purposes and mechanisms of reading and language (Snow et al., 1998; Kim 2016).

- Supports later development of skilled reading and literacy attainment

- Can be enhanced through a variety of environmental factors, interactions with adults, and explicit instruction (McDonnell et al, 2014).

- Especially important for students with CCN who use AAC, as research has suggested that the quality of their early literacy experiences differ, which may affect their development of emergent literacy skills (Light & Kent-Walsh, 2003)
Phonological awareness and phonics instruction are critical components to effective reading instruction

- **Phonological awareness**: the ability to notice, think about, and manipulate the sounds in language (Torgesen, 1997)
  - Refers to the understanding that spoken language can be broken into smaller sound units: sentences, words, syllables, phonemes
  - **Phonemic awareness** refers to the awareness of individual sounds in spoken words.

- **Phonics**: understanding and using the relationships between sounds and letters to decode unfamiliar words in text
PA can improve with instruction and intervention (most effective before 2\textsuperscript{nd} grade), and gains in PA lead to improvement in word decoding (Ehri et al., 2001; National Institute of Child Health and Human Development [NICHD], 2000a, 2000b; Troia, 1999).

Phonological awareness includes the following skills:
1. Rhyming
2. Phoneme identification
3. Blending
4. Segmentation
5. Manipulation
<table>
<thead>
<tr>
<th>Age/Grade</th>
<th>Skill or ability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preschool</td>
<td>Some rhyming ability (e.g., match rhymes)</td>
</tr>
<tr>
<td></td>
<td>Some beginning sound ability (e.g., beginning sound sorts)</td>
</tr>
<tr>
<td>Early kindergarten</td>
<td>Segment words into syllables</td>
</tr>
<tr>
<td>Middle kindergarten</td>
<td>Judge and match rhyming words</td>
</tr>
<tr>
<td></td>
<td>Generate rhyming words</td>
</tr>
<tr>
<td>Late kindergarten</td>
<td>Match words with same beginning sounds</td>
</tr>
<tr>
<td></td>
<td>Match words with same final sounds</td>
</tr>
<tr>
<td>Early first grade</td>
<td>Segment initial sounds and final sounds</td>
</tr>
<tr>
<td></td>
<td>Segment and blend two and three sound words that are consonant-vowel (e.g., go),</td>
</tr>
<tr>
<td></td>
<td>vowel-consonant (e.g., up), consonant-vowel-consonant (e.g., cat, moon)</td>
</tr>
<tr>
<td></td>
<td>Segment and blend sounds in words with consonant blends (e.g., skate, jump)</td>
</tr>
</tbody>
</table>

Figure 2. Expectations for the development of phonological awareness skills.

Figure 2
Model for Emphasis of Literacy Program of Different Age Levels

More Emphasis

Functional Reading

↑

Literature: Narrative and Informational (including use of books at all ages)

↓

How to Read (decoding, etc.)

Less Emphasis

Secondary

Middle

Elementary
# Principles of Effective Intervention

<table>
<thead>
<tr>
<th>Torgesen, 2004</th>
<th>Schuele, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic</td>
<td>Word reading intervention needs to:</td>
</tr>
<tr>
<td>Cumulative</td>
<td>• Be developmentally sequenced</td>
</tr>
<tr>
<td>Explicit</td>
<td>• Be sufficient in scope</td>
</tr>
<tr>
<td>Supportive</td>
<td>• Be sufficient in intensity and duration</td>
</tr>
<tr>
<td>Intensive</td>
<td>• Make explicit links between phonemes and graphemes</td>
</tr>
</tbody>
</table>
Adapted Instruction

• Adapted presentation by instructor and response mode by learner to meet individual needs of student with CCN

• Student communicates literacy knowledge receptively when presented with response choices (orally and/or visually)

• Example:
  – Initial phoneme segmentation:
    • *Cuál palabra empieza con el sonido /p/: beso, peso, queso, hueso?* (Which words starts with the sound /p/…)
Research does not yet exist on whether the applications of effective reading strategies, such as promoting phonemic and text awareness, will lead to independence as a reader for this population. What is important is that students with severe developmental disabilities have the educational opportunity to learn to read in the early grades” (Browder, 2009).
Review of Evidence

Systematic Reviews

• Machalicek et al. (2010)
• Barker, Saunders, & Brady (2012)
• Yorke (2013)---candidacy project specific to word reading interventions
  – All conclusive studies utilized direct instruction or organized instruction
Machalicek et al., (2010)

Fallon et al. (2004)
One male, 11 years old, intellectual disability. One male, 14 years old, intellectual disability. One male, 9 years old, Down syndrome

Improve student’s ability to match single sounds to the initial sounds of words, and to telescope sounds onto words. Increase the number of VC<sup>5</sup> and CVC<sup>4</sup> sight words read correctly

Direct instruction: Student presented with four picture symbols, written words and verbal labels. Three pictures were foils and one was the correct response. Student was asked to choose picture of the word that by student during reading of book

Results: Each of the three participants improved in their ability to read single targeted VC<sup>5</sup> and CVC<sup>4</sup> words. (M PND<sup>F</sup> = 96% range, 88–100%), but demonstrated less improvement in reading target words in book contexts with two of three participants demonstrating generalization to book contexts (M PND<sup>F</sup> = 83% range, 50–100%). However, generalization was not assessed during baseline assessment

Certainty of Evidence: Conclusive

Millar et al. (2004)
One female, 7 years old, cerebral palsy, cystic fibrosis, congenital amputation of left hand. One female, 10 years old, Cerebral palsy. One male, 10 years old, alternating hemiplegia

Improve child’s ability to correctly select the initial letters of orally presented words, and to correctly select letters that correspond to letter sounds

I. Direct instruction: For letter-sound instruction, interventionist vocalized a letter sound or word, and asked student to select corresponding letter/initial letter on keyboard using MTL<sup>1</sup> prompting

Results: Two of three participants improved in their ability to select the initial letters of orally presented words (M PND<sup>F</sup> = 100%) and to correctly select letters corresponding to letter sounds (M PND<sup>F</sup> = 78% range, 50–100%). The same two participants also demonstrated generalization of targeted skills to the identification of initial letters of novel words and one of the two participants was able to select the initial letter of words without the interventionist providing an oral model. However, one participant showed little progress on targeted skills until instruction was adapted and did not meet criterion performance for all targeted letters/sounds

Certainty of Evidence: Conclusive, for two participants. Inconclusive, for one participant due to lack of clinically significant improvement upon introduction of intervention

II. Writing workshop: Student provided four picture prompts. Interventionist read each word and student was asked to write a personal story. Interventionist modeled the selection of initial letters from the picture prompts and created a story by linking words typed by student
<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Intervention</th>
<th>Direct Instruction</th>
<th>Results</th>
<th>Certainty of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnston et al. (2009)</td>
<td>One male, 5 years old, cerebral palsy and severe developmental delay</td>
<td>Improve child’s ability to correctly identify targeted letters and spell words consisting of CVC&lt;sup&gt;3&lt;/sup&gt; combinations</td>
<td>Direct instruction: For teaching letter-sound correspondence, teacher delivered scripted instruction. Model-prompt-check prompts with 5 s constant time delay, corrective feedback and access to preferred item contingent on correct responses</td>
<td>Results: Student’s ability to correctly identify targeted letter and spell CVC&lt;sup&gt;3&lt;/sup&gt; words improved following instruction ($M$ PND&lt;sup&gt;D&lt;/sup&gt; for number of correct identification of letters=98% range, 88–100%; $M$ PND&lt;sup&gt;F&lt;/sup&gt; for number of correct spelling of CVC&lt;sup&gt;3&lt;/sup&gt; combinations=100%)</td>
<td>Conclusive</td>
</tr>
<tr>
<td>Truxler and O’Keefe (2007)</td>
<td>Four children, ages 8–9 years old, cerebral palsy and intellectual disability</td>
<td>I. Improve child’s ability to match spoken letter name or letter sound to the associated picture of the word beginning with that letter. II. Improve child’s ability to match spoken syllable or word read aloud to the correct written syllable or word</td>
<td>I. Direct instruction: Interventionist read a storybook to student that targeted a single letter/sound. Students answered comprehension questions by pointing to picture symbols. Interventionist reread story and pointed to targeted letter/sound in words. Student asked to find target letter on keyboard</td>
<td>II. Direct instruction: Interventionist blended letter/sounds into VC syllables and CVC&lt;sup&gt;3&lt;/sup&gt; words by elongating and iterating sounds, pointing to cards with written target letters, and sliding the letter cards together as the sounds were blended. Student asked</td>
<td>Inconclusive due to, Non-concurrent multiple baseline across participants design</td>
</tr>
</tbody>
</table>
# Table I. Article Summary.

<table>
<thead>
<tr>
<th>Study</th>
<th>Child</th>
<th>Age</th>
<th>Diagnosis</th>
<th>IDD</th>
<th>AAC</th>
<th>Speech Intelligibility</th>
<th>Pre-Intervention Reading</th>
<th>MES?</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blisckak et al. (2004)</td>
<td>Gabe</td>
<td>7.0</td>
<td>SLD</td>
<td>No</td>
<td>Unaided</td>
<td>20–30%</td>
<td>Phoneme-grapheme correspondence &gt; 50%. ID 10 target letters</td>
<td>No</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Larry</td>
<td>5.0</td>
<td>SLD</td>
<td>No</td>
<td>SGD</td>
<td>30–35%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jane</td>
<td>6.2</td>
<td>SLD</td>
<td>No</td>
<td>Unaided</td>
<td>20–30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleman-Martin et al.</td>
<td>Alice</td>
<td>11.0</td>
<td>CP</td>
<td>No</td>
<td>SGD</td>
<td>Severe speech impairment</td>
<td>Demonstrated grapheme-phoneme correspondence; 1st to 3rd grade reading level</td>
<td>Yes</td>
<td>Strong evidence</td>
</tr>
<tr>
<td></td>
<td>Beth</td>
<td>12.0</td>
<td>Autism</td>
<td>Mod</td>
<td>SGD</td>
<td></td>
<td>ID 50% of target letters when named; 100% after pre-training</td>
<td>Yes</td>
<td>Strong evidence</td>
</tr>
<tr>
<td></td>
<td>Carrie</td>
<td>16.0</td>
<td>TBI</td>
<td>Mod</td>
<td>SGD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fallon et al. (2004)</td>
<td>Dale</td>
<td>11.9</td>
<td>IDD</td>
<td>Mod</td>
<td>SGD</td>
<td>25%</td>
<td>ID 50% of target letters when named; 100% after pre-training</td>
<td>Yes</td>
<td>Strong evidence</td>
</tr>
<tr>
<td></td>
<td>Sam</td>
<td>14.0</td>
<td>IDD</td>
<td>MM</td>
<td>SGD</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tommy</td>
<td>9.11</td>
<td>CP</td>
<td>Mod</td>
<td>Unaided</td>
<td>30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amy</td>
<td>10.3</td>
<td>CP</td>
<td>No</td>
<td>Unaided</td>
<td>25%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nate</td>
<td>9.5</td>
<td>DS</td>
<td>Mod</td>
<td>SGD</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hanser &amp; Erickson (2007)</td>
<td>Child 1</td>
<td>13.2</td>
<td>CP</td>
<td>No</td>
<td>SGD</td>
<td>Unable to use speech to meet face-to-face communication needs</td>
<td>ID 37 or more capital and lowercase letters; score 11/13 on concepts of print; high Word ID scores</td>
<td>No</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Child 2</td>
<td>13.1</td>
<td>CP</td>
<td>Mild</td>
<td>SGD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Child 3</td>
<td>7.2</td>
<td>CP</td>
<td>No</td>
<td>SGD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betsy</td>
<td>16.0</td>
<td>CP</td>
<td>Mild</td>
<td>SGD</td>
<td>Anarthria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cathy</td>
<td>23.0</td>
<td>CP</td>
<td>Mild</td>
<td>SGD</td>
<td>Severe dysarthria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnston et al. (2009)</td>
<td>Eddie</td>
<td>5.3</td>
<td>CP</td>
<td>Mild</td>
<td>CB</td>
<td>5 words including yes and no</td>
<td>Symbolic knowledge, some print awareness</td>
<td>Yes</td>
<td>Strong evidence</td>
</tr>
<tr>
<td></td>
<td>Mary</td>
<td>4.2</td>
<td>CP</td>
<td>Mild</td>
<td>CB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millar et al. (2004)</td>
<td>Melinda</td>
<td>7.0</td>
<td>CP</td>
<td>No</td>
<td>SGD</td>
<td>Less than 50%</td>
<td>ID 70% of letters by name. Each could ID some words by sight</td>
<td>Yes</td>
<td>No evidence</td>
</tr>
<tr>
<td></td>
<td>Haley</td>
<td>10.0</td>
<td>CP</td>
<td>Mod</td>
<td>CB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gary</td>
<td>10.0</td>
<td>CP</td>
<td>Mod</td>
<td>SGD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truxler &amp; O’Keefe (2007)</td>
<td>Child 1</td>
<td>8.0</td>
<td>CP</td>
<td>DNS</td>
<td>CB</td>
<td>1- to 2-word utterances intelligible to familiar listeners</td>
<td>40% or less correct on modified Word ID and Word Attack</td>
<td>Yes</td>
<td>Strong evidence</td>
</tr>
<tr>
<td></td>
<td>Child 2</td>
<td>9.6</td>
<td>CP</td>
<td>DNS</td>
<td>CB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Child 3</td>
<td>9.7</td>
<td>CP</td>
<td>DNS</td>
<td>CB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Child 4</td>
<td>9.6</td>
<td>CP</td>
<td>DNS</td>
<td>CB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note. Age in years:months. SLD: Speech and/or Language disorder; CP: Cerebral Palsy; TBI: Traumatic Brain Injury; IDD: Intellectual and Developmental Disability; DS: Down syndrome; HOS: Holt-Oram syndrome; Mod: Moderate; MM: Mild to Moderate; DNS: Yes, did not specify severity; SGD: Speech-generating device; CB, non-electronic communication board; ID, Identification; MES?, Met minimum evidence standards?*
<table>
<thead>
<tr>
<th></th>
<th>Direct Instruction</th>
<th>Nonverbal Reading Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Modeled Task</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Guided Practice: Produced each phoneme and modeled blending</td>
<td>Yes- All letters visible, tracked with finger</td>
<td>Yes- Covered letters and revealed one at a time. Emphasized “Say it in your head”</td>
</tr>
<tr>
<td>Checked for Accuracy</td>
<td>Yes, Immediately</td>
<td>No</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Match written word to picture (f=4)</td>
<td>Read written word. Identify a spoken word from 4 choices.</td>
</tr>
</tbody>
</table>

**Yorke (2013)**

<table>
<thead>
<tr>
<th></th>
<th>Direct Instruction</th>
<th>Organized Instruction Nonverbal Reading Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Phoneme Matching and Blending Skills</td>
<td>Taught via Direct Instruction as part of each intervention session prior to decoding instruction.</td>
<td>Included in decoding instruction only.</td>
</tr>
</tbody>
</table>
“Phonological processing is intrinsic to children's reading acquisition regardless of the orthography” (Hu & Catts, 2009).
Participant criteria

• How does the recruitment process differ in SSCDs?
  – Can you recruit participants first, prior to intervention development?

• Participant requirements:
  – Spanish must be primary language spoken in the home and reported as student’s dominant language as assessed by parents with Language background interview/questionnaire
  – Vision/hearing within normal limits (with corrections)
  – Operationalize CCN
    • Speech intelligibility? Measured how?
  – Demonstrate ability to make and clearly indicate choices (e.g., point or eye gaze, etc.)
    • Field of 4?
  – Demonstrate print awareness (ID sentences, words, letters)
    • Measured how?
  – Demonstrate understanding of basic concepts used in instruction (start/end, same/different)
    • Measured how?
  – Preintervention: receptively identify % of picture cards after teaching certain # weeks?
    • Criterion level? Time constraints? Best practices for choosing targets?

Are there any good resources describing best practices or commonly used cutoffs/criterion level for skills and other inclusionary/exclusionary requirements?
Limit participant restrictions

- Do NOT need to demonstrate letter-sound knowledge prior to intervention
- Do NOT need to be current AAC users
- Do NOT need to be educated in a bilingual program
- NO “school-age” limit although ideal grades are Pre-First
- NO restrictions based on type of DD or presence/level of ID, although cognition and other relevant details (e.g., diagnosis) should be measured and reported

Measures of cognition/IQ: Nonverbal intelligence (e.g., PTONI)? Attention? Memory?
**Design**

Multiple Baselines
Across Behaviors
- Minimum # of data points
  - 3-5?

• Criteria for initiation of intervention?
• Single participant
• 3 or more behaviors?
  - LSC, Rhyming, Segmenting, Blending
  • Syllable or phoneme level?

Concern: Behaviors must be independent, so inclusion of letters/words adds complication

Is multiple baseline across participants preferred?
Considerations for Materials and Measures

• Selection and order/sequence of target Spanish PA skills
• Selection and order/sequence of target letter-sound correspondences
• Intervention “package” or skill at a time?
• Pseudo and/or non-words too?
• Increasing difficulty
  – starting with syllables and moving to phonemes?
  – altering relationship of foils/distractors to targets?
• Characteristics of best symbols/images (realistic, illustrations, getty or google images, PRC, personalized, visual scene)?
• Static grid with field of 4?
• Picture cards and response templates
  – Is there a virtual or online platform that could easily support this intervention?
• Should targets be culturally and dialectically “neutral”, region specific, personalized to student?
• Assessment of PA as % accurate?
• Assessment of LSC as % accurate?
• Should a certain level of mastery be required before moving to next skill?
Procedural Considerations

• Administrator training (Script, duration, evidence of passing/completion?)
• Administration criteria:
  – One-on-one instruction
    • Native Spanish-speaking preferred but should it be required in preliminary and pilot research?
    • Researcher/SLP or student clinician? What about parent, teacher, or aide?
• Location (home or school or given preference)?
• Starting point, duration, and dosage/intensity
  – Can it differ by participant?
• What is the standard protocol for halting intervention if no positive effects demonstrated?
• Evidence-based instructional principles and strategies:
  – Introduce, Teach, Model, Active Practice, Evaluation, Guided Practice
• Fidelity of implementation checklist (record 20% sessions?)
• Reliability of scoring (record 20% sessions?)
“One writes out of a need to communicate and to commune with others, to denounce that which gives pain and to share that which gives happiness...

One assumes that literature transmits knowledge and affects the behavior and language of those who read, thus helping us to know ourselves better and to save ourselves collectively...

One writes, in reality, for the people whose luck or misfortune one identifies with—the hungry, the sleepless, the rebels, and the wretched of this earth—and the majority of them are illiterate.”

- Eduardo Galeano, In Defense of the Word, 1976 (130)
Feedback, Recommendations, Notes
References


References


• Harrison-Harris, O. L. (2002). AAC, literacy, and bilingualism. *ASHA Leader*, 7, 4-17.


• Hulme, C., & Snowling, M. J. (2013). Learning to read: What we know and what we need to understand better. *Child Development Perspectives*, 7, 1-5.

• Kim, Y.-S. G. (2016b). Systematic and Evidence-based Literacy Instruction. South Korea: Hakjisa
References


• Light, J. & Kent-Walsh, J. (2003). Fostering emergent literacy for children who require AAC. *ASHA Leader, 8*, 4-29. doi:10.1044/leader.FTR1.08102003.4


References


• Yorke, A. (2013). Reading-related phonological processing interventions for individuals who use AAC: A systematic review, Candidacy Project.