TEACHING EYE-GAZE MOTOR SKILLS OUTSIDE OF THE CONTEXT OF COMMUNICATION

CHERI WILD BLUE
UNIVERSITY OF UTAH, DEPARTMENT OF SPECIAL EDUCATION

HELLO!
• First year doc student
• Special Education
• Mentor: Dr. Susan Johnston
• Public School SLP for 9 years
• California- resource rich district
• New Mexico- resource poor district

“COMMUNICATION IS NOT ONLY THE ESSENCE OF BEING HUMAN, BUT ALSO A VITAL PROPERTY OF LIFE.”
-JOHN A. PIECE

BACKGROUND
• Severe motor impairments limit all aspects of development (Raghavendra, Olsson, Sampson, McInerney & Connell, 2012).
• AAC can mitigate these adverse effects (Henderson, Skelton, Rosenbaum, 2008).
BACKGROUND
• Eye-gaze controlled assistive technology (AT):
 • Valid, evidence-based intervention. (Henderson, Skelton, Rosenbaum, 2008).
 • Widely available and practical (Majaranta, 2012; Pfeffer, 2014).
 • Can mitigate limitations from severe motor impairment and improve quality of life. (Borgestig et al., 2016; Berry and Ignash, 2003).

CASE REPORT (HEMMINGSON AND BORGESTIG, 2017)
• Infant with severe motor impairments (C1 quadriplegic)
• Unable to speak due to respiratory factors
• Eye-gaze AT introduced 9 months of age
• At 26 months of age, he was able to
 • Spontaneously interact with parents and siblings
 • Label objects using eye-gaze controlled AAC system.

BACKGROUND
• Operation of eye-gaze controlled AT is typically taught within the context of communication.
• This approach may have limitations (Karlsson et al., 2019)
• A systematic instructional plan is key. (Van Niekerk & Tongsing, 2015)

STUDY OBJECTIVE
Is systematic instruction of eye-gaze motor skills practiced outside the context of communication effective in increasing eye gaze control?
METHODS & STUDY PARTICIPANT

- Single case study investigation
- 17-year-old male with Aicardi-Goutieres Syndrome
 - Cortical visual impairment
 - Spastic cerebral palsy
- Non-ambulatory, requires total assistance for activities of daily living.
- Motor impairments preclude verbal speech- nods head to communicate yes/no

PARTICIPANT CHARACTERISTICS

- Demonstrates understanding of spoken language in both and home and school
- Understands and enjoys humor
- Interested in and follows peer conversations
- Motivated by social interaction and practicing skills in community settings

STUDY INTERVENTION

- *Look to Learn* software: 40 eye-gaze controlled video game activities
- We identified activities that:
 - Practice skills necessary for eye-gaze controlled AT
 - Elicit an observable and measurable behavior
- 20 *Look to Learn* activities met criteria
 - Organized into 7 levels based on complexity and learning objective
 - Easiest skills introduced first with progressive difficulty/complexity

INTERVENTION LEVELS

<table>
<thead>
<tr>
<th>Level/Objective</th>
<th>Activities Within Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1: Screen Initiation</td>
<td>Magic Mouse, Canon, Magic Squares</td>
</tr>
<tr>
<td>Level 2: Large Target Selection</td>
<td>Egg, Reveal Shapes, Real Shapes, Reveal Blocks, Custard Pies</td>
</tr>
<tr>
<td>Level 3: Medium Target Selection</td>
<td>Face Splat, Hose, Shoot, Video Wall</td>
</tr>
<tr>
<td>Level 4: Large Target Selection with Dwell Function</td>
<td>Farmyard</td>
</tr>
<tr>
<td>Level 5: Medium Target Selection with Dwell Function</td>
<td>Musical Squares</td>
</tr>
<tr>
<td>Level 6: Indicate a Choice Using Dwell Function</td>
<td>Dinner Time, Javelin, Snowman, Tyres, Opinions</td>
</tr>
<tr>
<td>Level 7: Indicate a Series of Choices Using Dwell Function</td>
<td>Monster Factory</td>
</tr>
</tbody>
</table>
INTERVENTION

- Goal: daily Look to Learn sessions
- Each session has five “opportunities”
 - Sequence of prompts to complete a Look to Learn task
- Session scored from 0-5 for number of opportunities completed
- Mastery required to progress to next level
 - Mastery defined as score of ≥ 4 in 2 of 3 consecutive sessions
- Asses inter-observer agreement, intervention fidelity in 20% of sessions

PRELIMINARY RESULTS

- 28 sessions completed
- Levels 1 & 2 mastered
- 100% inter-observer agreement and intervention fidelity
INTERPRETATION OF RESULTS

• Eye-gaze motor skills can be acquired outside the context of communication
• Participant motivation is key to success
• Consistency of implementation plays a role in success
• Rate of level mastery may slow as objectives become more difficult

FUTURE DIRECTIONS

• Reproduce study with single-case design with 3-6 participants
• Assess generalization of eye-gaze motor skills for communication application
• Identify optimal level/timing for introduction of eye-gaze AAC

DISCUSSION

Participant-related research barriers among low incidence populations in public school context
• Inconsistent school attendance due to health issues
• Participant recruitment
• Inclusion and exclusion criteria

DISCUSSION

Systems-related research barriers among low incidence populations in public school context
• School personnel
• District/Administrative support
• Availability and function of technology