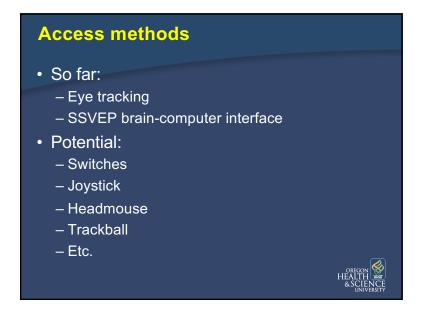
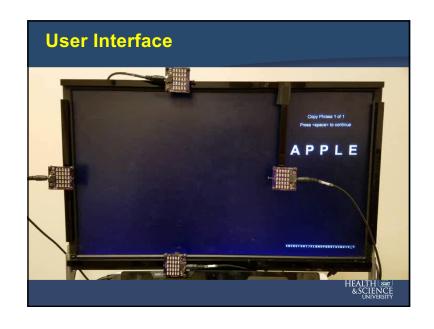


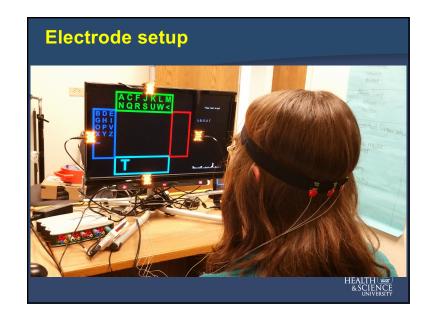
The Problem:

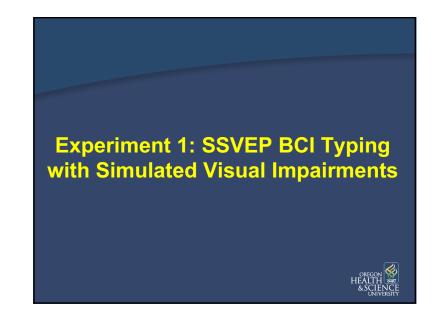
- People with severe physical impairments may be unable to use commonly available AAC and computer access methods.
 - Minimal movement
 - Inconsistent movement
- · Can design help?
- How about math?

Shuffle Speller

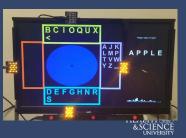

- Typing interface
- Can be used with various access methods
- Adapts to user input characteristics
- Aggregates evidence from multiple queries




Adaptation to the user


- Character presentation
 - Based on:
 - Language model probabilities
 - User-specific calibration data
 - Uses boxes that will get the most information from a user
- Multiple queries
 - Keeps asking "smart" questions until confidence threshold is reached

Participants


- Healthy controls
- Ages 21-80
- Normal or corrected-to-normal hearing and vision
- Passing score on Telephone Interview for Cognitive Status

Variables

- Independent variable: condition
 - Unimpaired
 - Simulated visual acuity impairment (VAI)
 - Simulated ocular motility impairment (OMI)

Variables

- Dependent variables
 - 1. Typing accuracy (correct selections/total selections)
 - 2. Typing speed (characters per minute)
 - 3. User experience
 - 1. Comfort
 - 2. Workload
 - 3. Satisfaction

Tasks

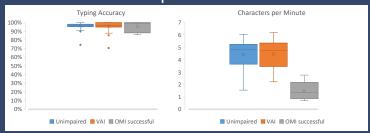
- Copy-spelling
 - 10 words per session (different each time)
 - 5-7 letters each
 - Balanced for language model support
- Stoppage criteria (for motility condition)
 - Stop if no letter selections within 5 minutes
 - Stop after 20 minutes regardless of performance

Analysis

- Unimpaired vs. VAI
 - paired *t* test of mean equivalence
- Descriptive statistics for OMI

Results

- 38 participants
 - Aged 37.2 ± 15.47 years
 - 26 women
 - -17.3 ± 2.41 years of education
 - Mostly 20/20 vision both near (n=35) and distance (n=31)


Results: unimpaired and VAI

- All participants could spell under unimpaired and VAI conditions
 - VAI performance was not inferior for either accuracy or speed

Results: OMI

- 6/37 spelled word(s) under OMI condition
 - Accuracy comparable to other conditions, speed greatly reduced
 - Longer trial lengths
- 31/37 could not spell under OMI condition

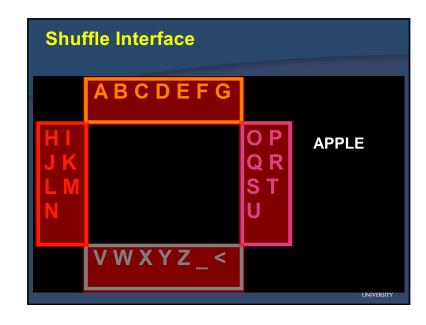
Results: unimpaired and VAI outliers

- 6 participants had low accuracy (<80%) and/or failed to complete 10 words under unimpaired or VAI conditions
 - Color blindness (difficulty seeing correct & incorrect selections)
 - Fatigue
 - Confusion about backspace character
 - Misreading of target word

Results: UX

- Unimpaired and VAI
 - Low ratings for workload and discomfort
 - High ratings for overall satisfaction
- OMI
 - Higher ratings for workload
 - Similar ratings for discomfort
 - Lower ratings for overall satisfaction

Discussion


- 20/200 acuity impairment (legal blindness) is not an obstacle to Shuffle use
- Some people may be able to use Shuffle with reduced motility
- High user satisfaction (unimpaired and VAI)
- Adaptive trial length
 - May support accurate typing

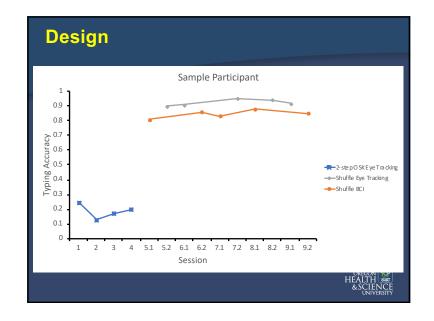
Experiment 2: Eyegaze and EEG Access for Participants with SSPI

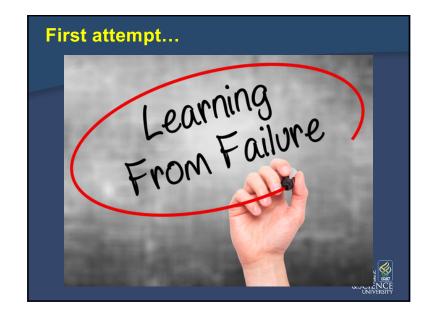
Research Questions

- Is the Shuffle Speller interface, accessed with eyegaze or SSVEP-BCI, a viable option for people who have difficulty with traditional grid-based eyegaze systems?
- How do eyegaze access and SSVEP-BCI access compare?

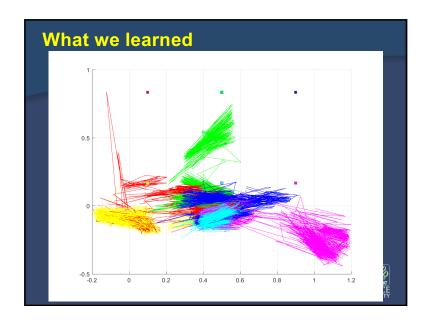
Participants

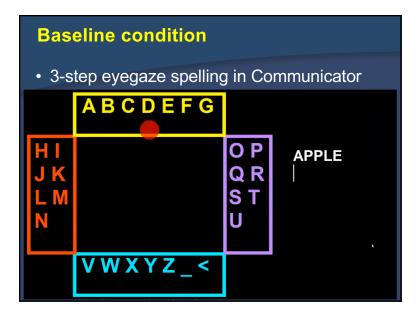
 3 adults with SSPI who have difficulty with commercially-available eyegaze systems

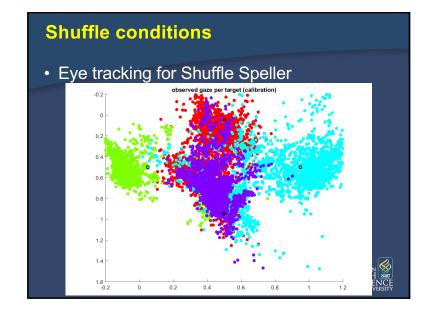



Design

- Single-case alternating-treatments research design
- Baseline: Two-step keyboard in Communicator 5 (similar to existing multistep, large-button keyboards)
- Alternating treatments:
 - Shuffle Speller BCI
 - Shuffle Speller eyegaze
- 6 boxes used for all conditions




Second attempt


- Switch from 6 boxes to 4 for all conditions
 - Equipment failure
 - Possible easier for some participants
- Baseline: Three-step keyboard in Communicator 5 (1.2 second dwell)
- Alternating treatments:
 - Shuffle Speller BCI
 - Shuffle Speller eyegaze: New algorithm!
 - Three-step keyboard in Communicator 5 second dwell)

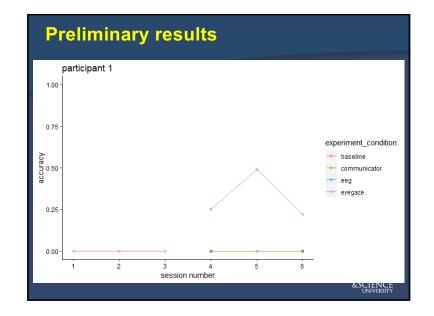
Alternating treatments conditions: Potential advantages

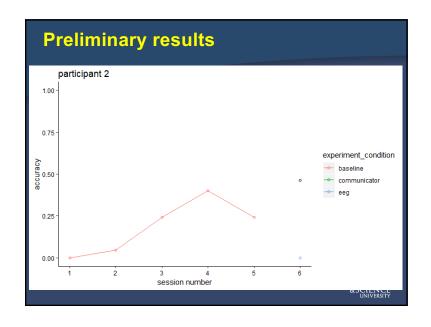
- Shuffle Speller (Eyegaze or SSVEP BCI)
 - Smart querying
 - Aggregated evidence
 - Adapted to user input characteristics
 - Modified eye tracking is more forgiving
 - BCI option may work for some users when eye tracking won't
- Multi-step Communicator keyboard with 2.5 second dwell
 - Longer dwell allows more time to move

Tasks

- Copy-spelling
 - 5 words per session
 - 5 letters each
 - Balanced for language model support

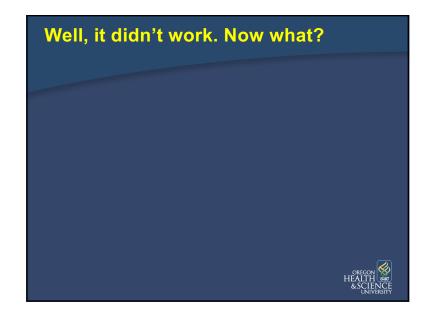
Variables


- Independent variable: condition
 - Baseline: 3-step Communicator keyboard
 - Alternating treatments:
 - Shuffle Speller eyegaze
 - Shuffle Speller BCI



Variables

- Dependent variables
 - 1. Typing accuracy (correct selections/total selections)
 - 2. Typing speed (characters per minute)
 - 3. User experience
 - 1. Comfort
 - 2. Workload
 - 3. Satisfaction



Next steps Finish data collection 5+ sessions with each condition Bonus round!

What are some obstacles to adopting a new access method, and what can we do about them?

