Spoken vocabulary outcomes of toddlers with developmental delay: A phonetic description and analysis

Casy Walters, M.Ed., CCC-SLP Georgia State University

Speech Sound Development

Augmentative and Alternative Communication and Speech Outcomes

Myth 1 (Romski \& sevcik. 2005)	Myth 2 (Romski \& Sevcik, 2005)	Challenge Remains
"AAC hinders or stops further speech development." \rightarrow AAC intervention may result in increasing vocal and speech development (Bauman-Leech \& Cress, 2011; Millar, Light, \& Schlosser, 2006; Romski et al., 2010) \rightarrow As of yet, relatively few studies have investigated specific effects of AAC on speech sound development	"Children must have a certain set of skills to be able to benefit from AAC." \rightarrow Language growth as an outcome of AAC intervention (Barton, Sevcik, \& Romski, 2006; Branson \& Demchak, 2009; Romski et al., 2010).	Hesitation persists for parents and professionals in using this method with the fear that spoken-verbal communication will be hindered (Romski \& Sevcik, 2005).
Introduction	Methods \quad Results	\sum Discussion

Participants

- The current study used data from two larger studies (Romski et al., 2010 \& Romski et al., in preparation).
- Inclusionary criteria for both studies
- 24 to 36 months of age at the beginning of recruitment
- an expressive vocabulary of less than 10 intelligible words
- significant expressive language delay (i.e., less than 12 months) on the Mullen Scales of Early Learning (MSEL; Mullen, 1995)
- indication of intentional communication (e.g., intentional gestures, joint attention, vocalizations)
- upper extremity motor control to access symbols on the speech generating device (SGD)
- primary diagnosis other than delayed speech and language skills, hearing/vision impairment and Methoas

Participants Cont'd

- 48 children (12 females and 34 males) produced at least one spoken target vocabulary word at session 18 and/or session 24
- 42% of the larger sample $(n=113)$
- Mean chronological age was 31.09 months
- African American $(n=18)$, Asian $(n=4)$, multi-racial $(n=1)$, and Caucasian $(n=23)$ backgrounds
- The children were diagnosed with variety of disorders including: apraxia of speech, cerebral palsy, Down syndrome, developmental disability, mitochondrial disorder, pervasive developmental disorder, speech delay, seizure disorder, and unknown etiology

Intervention

- Participants were randomly assigned to one of four intervention groups:
- Spoken communication input (SCI),
- Augmented communication output (ACO)
- Augmented communication input (ACI),
- Augmented communication input and output (AC-IO).
- Intervention usually occurred twice per week for 24 sessions
- Each child was given a selection of target ocabulary words, chosen by the parent and he speech-language pathologist, to use hroughout the intervention.
- Target vocabulary words chosen based on the following factors: 1) lack of comprehension at baseline, 2) were motivating to the child, and 3) were easily generalizable to the child's home setting.
- Developmental appropriateness of phonemes in target words was not considered in target word selection.

Data Analysis

- Using extant database from Romski et al., (2010) and Romski et al., (in preparation) spoken target words were located in SALT transcripts and in the accompanying videotape.
- Each spoken target word was transcribed using the International phonetic alphabet.
- Percent of consonants correct (PCC) and percent of phonemes correct (PPC) were calculated.
- Phonemes were categorized into Shriberg's (1993) developmental sound classes (early, middle, and late-
8).

Introduction Method

Results
Discussion

Results: Initial Analysis

- One-way analysis of variances (ANOVA) revealed non-significant differences for age, sex, ethnicity, and diagnosis between groups.
- Tested for Linearity:
- Measures of speech did not meet assumptions for linearity, therefore proceeded with nonparametric analyses for those variables
- Measures of baseline language abilities met most assumptions for linearity with a few, important outliers so proceeded with linear regressions with these variables.

Results: Aim $1 \begin{aligned} & \text { To characterize the phonetic make-up of the children's spoken target } \\ & \text { vocabulary words to determine if they follow typical developmental patic }\end{aligned}$

- On average, 81.5% of spoken target vocabulary phonemes were accurately produced.
- Across intervention groups, the majority of errors (75.5%) were age appropriate.

	$\mathrm{AAC}(n=33)$	SCI $(n=6)$
Group Descriptors M(SD)		
Age at Baseline	31.25(6.23)	30.44(3.89)
Number of different spoken target	$5.46(5.31)$	${ }_{\text {1 }}^{1.44(1.51)}$
Phoneme Descriptions M(SD)		
PCC (Early-8)	.87(.21)	$1(0)$
PCC (Middle-8)	.80(21)	.95(.11)
PCC (Late-8)	.70.(30)	.60(42)
PCC (Total-8)	.81(.14)	.82(.21)
Percent of Errors M (SD)		
Final Consonant Deletion	.022.03)	0
Substitution	.03(.03)	0
Deletion	.01(.02)	.08(.02)
Cluster reduction	.04(.06)	0
Vocalic $\mathrm{f/}$ / errors	.03(.07)	0
Vowel errors	.006(.02)	0
Other	.01(.02)	0
$>$ Results	\rangle	ussion

Discussion

- Producing more errors when beginning to speak is a common trait of emerging talkers.
- These results confirm prior research that young children with developmental disorders beginning to speak, produce developmentally appropriate speech-sound errors (Bauman-Waengler, 2012; Bysterveldt, 2009; Kumin et al., 1994; Shriberg, 1993).
- Negates the potential negative effects of AAC intervention on articulation development in young children with developmental disorders (Miller et al 2006; Romski et al., 2010; Romski \& Sevcik, 1996).

- Non-parametric, Mann-Whitney U to determine if differences between groups on speech sound error patterns at session 24.

Non-parametric, Mann-Whitney U to determine if SGD had an effect on the accuracy of phonemes in different developmental classes.

- AAC group produced significantly more cluster reductions than children in the spoken condition, $U(38)=118.50, p=.03$
We examined clusters available in target vocabulary-no significant differences between groups.

Discussion

- Intervention specifically targeting spoken language did not yield better accuracy of spoken target vocabulary words compared to AAC interventions.
- This adds to the literature that supports AAC using SGDs as a means of early intervention, and dispute the idea that AAC may cause some detrimental effects to speech-sounds development

Results: Aim $3 \begin{aligned} & \text { To examine which factors influence spoken target vocabulary outcomes including vocal } \\ & \text { imitation and receptive language skills at baseline. }\end{aligned}$

Table 3

Model	Variable	B	SE(B)	β	t	p	r2	$\operatorname{sig} \Delta$
1							. 11	. 02
	Intervention Group*	4.61	1.94	. 33	2.37	. 02		
2							. 12	. 01
	Intervention Group*	4.16	1.84	. 30	2.27	. 03		
	Receptive Lang at Baseline*	. 32	. 12	. 35	2.66	. 01		
3	Intervention Group*	4.86	1.87	. 35	2.60	. 01	. 07	. 14
	Receptive Lang at Baseline	21	. 13	. 23	1.63	. 11		
	Vocal Imitation at Baseline	1.64	1.89	. 12	. 87	. 39		
	Unintelligible Voc. At Baseline	. 02	. 01	. 23	1.71	. 10		

Discussion

- These findings support Romski et al. (2010) outcomes, which showed that participation in augmented intervention produced an increased probability of spoken target vocabulary.
- Similar to language development in typical children, baseline receptive language skills are important predictors of expressive language outcomes. However, these results do not support that a prerequisite level of skill is necessary for speech outcomes.
- Having AAC intervention, versus a spoken language intervention, was the most reliable predictor of number of different spoken words at the end of intervention.

Clinical Implications

- Clinicians should use AAC with young children with severe communication disorder to support expressive language development without fear that it will impair articulation skills.
- Findings reject the myth that a certain level of prerequisite skill is required prior to intervening with AAC (Romski \& Sevcik, 2005).
- Method of intervention is more important than the baseline skillset.
- AAC options in speech-language therapy allows children with severe developmental delay to continue to develop expressive language abilities in parallel to articulation skitls. - Without pressure of having to communicate orally.

Future Directions

- Include standardized articulation assessments throughout the intervention process
- Assess for stimulability at baseline
- Include all spoken-communication during an AAC intervention, not just adult-like forms
- Continued investigation of baseline factors may be important to understand if there are any circumstances in which we may be able to predict success with early AAC intervention.
- Examine the frequency of exposure to target vocabulary words at home, in between sessions

Examples of words in spoken vocabulary

- Giraffe
- Ball
- MyTurn
- Bubbles
- Jumping
- Apple
- More
- AllDone

Acknowledgements

- A BIG thank you to:
- Dr. Rose Sevcik
- Dr. MaryAnn Romski
- CRADL and SAL labmates
- Center for Research on Challenges of Acquiring Language and Literacy
- My family

All the families that participated in the
research!

- These data were funded by the National Institutes of Health grant DC-03799 and U.S. Department of Education, Institute of Education Sciences Grant R324A070122 to MaryAnn Romski

Additional Slides

