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1 Overview

My main interests lie in the field of applied mathematics, specifically, in modeling and controlling physical
phenomena as well as in numerical analysis of Partial Differential Equations (PDEs) that describe physical
processes. I am particularly intrigued by how mathematics builds a bridge between physics and engineering
through the use of analytical and computational techniques.

In what follows, I will outline my main results and proposed future research. In Sect. 2, I present my
work on inhomogeneous media. An overview of a numerical method for solving eigenproblems is provided
in Sect. 3. Sect. 4 summarizes my papers on controlling vibrating and heat conducting systems. In Sect. 5,
I discuss an application of diffraction theory. Finally, in Sect. 6, I conclude this statement with my research
plans.

2 Mechanics of Inhomogeneous Continua

2.1 Spectral problems: explaining vibrations of composite media.
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т.е. K̇(t) ∈ L1(R+), что соответствует условию ρ(y) /∈ H1(Y ). Тогда веще-
ственная часть спектра, как и в предыдущем случае, состоит из счетного
числа серий µn,N , сходящихся к своим предельным точкам µN , Комплекс-
ная часть спектра состоит комплексно-сопряженных собственных значений
λ±n , у которых и мнимые, и действительные части стремятся к бесконечно-
сти.

В третьей главе методом конечных объемов [6] выводятся разност-
ные уравнения для численного решения периодических локальных вспо-
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Fig. 1 Spectrum of an emulsion. The
spectrum consists of real (dissipative) se-
ries µn,N with limit points µN , a series
going to −∞, and a complex (oscillatory)
series λ±

n that has an asymptote β [4].

While classical homogeneous media, e.g. isotropic elastic materi-
als, offer a rich variety of still unresolved problems, many everyday
applications in industry and engineering—food industry, construc-
tion, mineral extraction—deal with inhomogeneous continua such
as emulsions, suspensions, granular materials, etc. Spectral, in par-
ticular, vibrational, properties of these composite materials are im-
portant for quality control, suppression of vibrations, defect detec-
tion, among other practical aspects. I have been working in this
area since my M.Sc. thesis [1] (supervised by Prof. A. S. Shamaev
from Lomonosov Moscow State Univ—MSU, & Ishlinsky Institute
for Problems in Mechanics of the Russian Academy of Sciences—
IPMech, and advised by Prof. V. V. Vlasov from MSU). In [1],
a formula for an asymptote of complex natural frequencies for a
mixture of weakly-viscous fluids was derived, see Fig. 1. This study
was inspired by works of V. Zhikov [SR1] on spectra of homogenized
models of composite materials. Such findings may give an understanding of the oscillatory and dissipative
properties of composites where the application of standard approaches. e.g. vibration theory, is hindered.
Although results in [1] were obtained through simple asymptotic techniques, they led to several papers
exploring the spectra of various homogenized models [2, 3, 4], and paved the way for a series of papers by
A. Shamaev, V. Vlasov and their collaborators, e.g. [SR2, SR3, SR4, SR5] on rigorous analysis of spectral
properties of operators arising in homogenization theory. Findings in [2, 4] explain, for example, experi-
mental observations where a porous elastic material saturated with a viscous fluid has only a finite number
of natural frequencies [SR6] contrary to the purely elastic case when it is infinite. A homogenized model of
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a mixture of two fluids employed in [1] was also studied in my Ph.D. thesis [5] (advised by A. Shamaev),
where a kernel of the dynamic Darcy equation was constructed numerically and strong L2-convergence of
velocity field and its gradients was demonstrated [6] extending results of T. Levy and E. Sanchez-Palencia
[SR7, SR8].

2.2 Combining experiments and vibration theory
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Fig. 2 Scheme of the res-
onator [8]. A sample of
granulated medium is placed
in a vessel filled with wa-
ter. The resonance frequen-
cies are measured.

Another approach based on experimental data was utilized in my Ph.D. thesis
[5, 7, 8] in collaboration with Prof. S. V. Nesterov (IPMech & Bauman Moscow
State Technical University—BMSTU) and Prof. L. D. Akulenko (IPMech &
Moscow Institute of Physics and Technology—MIPT) for studying acoustic
properties granular media saturated with a liquid (e.g. seafloor sand). The
experimental setup for these studies, see Fig. 2, was constructed by S. Nesterov
with the goal of measuring the resonant frequencies of a vessel filled with fluid
and containing the sample media By analyzing these resonant frequencies, it
is possible to derive explicit expressions for the dynamic density and the speed
of sound in the sample by employing perturbation techniques for the analysis
of the acoustic (Helmholtz) equation. The resulting formulas depend on the
geometrical and physical parameters of the resonator and the frequency of the
external acoustic field. Similar techniques were used in studies of the elastic
media with viscous inclusions in collaboration with Prof. I. Pettersson (Narvik
Univ, now Chalmers Univ of Technology & Univ of Gothenburg).

2.3 Applications of homogenization theory: preventing sinkholes
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Fig. 2. Finite element mesh in the cases of the direct
layered medium model (a), the homogenized model
with the same mesh (b), and the homogenized model
consisting of only one element (c)

consists of 8000 hexahedral elements: 10 × 10 in the
horizontal plane and 4 elements per each layer in the
vertical direction (see Fig. 2a). In the second one, the
homogenized model of the medium is used on the same
mesh (see Fig. 2b). In the third problem statement, the
homogenized model of the medium is used again, but the
mesh consists of only one finite element. (Fig. 2c). The
problems examined below lead to the homogeneous stress-
strain state in the averaged material model. Therefore, the
results obtained in the second and in the third cases must
coincide. The 4 orders mesh size reduction demonstrates
the practical efficiency of the method of homogenization.

The computation is performed on the time interval t =
0 . . . T with the variable adaptive integration step. The
first step is equal to ∆t = 0.01. Homogenized tensors with
100 steps per period are used at the results presented below
for the homogenized model. All the problems are solved in
a geometrically linear formulation.

The numerical experiments are performed for the following
types of external loads: the uniaxial stress orthogonal
to the layers, the uniaxial stress along the layers, the
shear parallel to the layers, the shear orthogonal to the
layers, the full compression. For all this typical cases, the
difference in strains is less than 5% for the exact model as
compared to the homogenized one for the typical process
times. More details are given below on the results of
calculations in the cases of the uniaxial stress orthogonal
to the layers, the uniaxial stress along the layers, and the
shear parallel to the layers.

4.1 Uniaxial stress orthogonal to the layers

The bottom face of the cube is rigidly fixed (the displace-
ments are set to zero). The stretching stress σ22 = 10
is applied to the top face. The case of uniaxial tension
corresponds to the stretching-compression experiments for
material samples. Each layer tends to change in cross-
sectional size in different degree due to the difference
in the Poisson’s ratio. As a result, the solution of this
problem for the layered medium becomes essentially three-
dimensional. The following problem is considered with
the purpose to obtain simpler solutions. The additional
condition of zero horizontal displacements u1 = u3 = 0 is
imposed on all points of the medium. This corresponds to
the condition ε11 = ε33 = 0 for the strain tensor compo-
nents. The solution of this problem problem depends only
on one spatial coordinate y. Thus, the conditions corre-
spond to the uniaxial medium deformation. The calculated
strain tensor component ε22(t) is shown in Fig. 3 for
the described above three problem statements. Here and
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Fig. 3. The strain tensor component ε22(t) for three
problem statements

below in the paper, the calculated for the layered model
strain tensor is then averaged over the layers. Therefore,
the resulting strain tensor component ε22(t) shown in the
figure is constant in space for the all three cases. There is
an exact match for different meshes for the homogenized
model. The difference between the homogenized and non-
homogenized models is 3.2% at the moment of time t = T ,
where T = 3.

4.2 Uniaxial stress along the layers

The rear face of the cube is rigidly fixed (the displacements
are set to zero). The stretching stress σ11 = 10 is applied to
the front face. As in the previous example, the additional
condition of zero horizontal displacements orthogonal to
the load direction u2 = u3 = 0 is imposed on the all
medium points. This condition corresponds to the strain
tensor components ε22 = ε33 = 0. It allows to simulate the
uniaxial deformation. The resulting strain tensor compo-
nent ε11(t) is shown in Fig. 4 for the three problem state-
ments described above. There is an exact match for dif-
ferent meshes for the homogenized model. The difference
between the homogenized and non-homogenized models is
1.2% at the moment of time t = T .
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Fig. 4. The strain tensor component ε11(t) for three
problem statements

4.3 Shear parallel to the layers

The bottom face of the cube is rigidly fixed (the displace-
ments are set to zero). The tangent stress σ12 = 10 is ap-
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Fig. 3 Homogenized vs original models
[9]. Strains for uniaxial stretching stress ap-
plied along the layers.

Mining, although necessary, may have serious environmental
impacts. One of the repercussions of potash mining is that
groundwater gradually dissolves the walls of an empty mine
which suddenly collapses causing a sinkhole. To improve the
sustainability of mining and reduce environmental damage,
the modeling of the long-time behavior of massive soil struc-
tures is vital. In a framework of a research contract with a
mining company UralChem (one of the largest producers of
ammonia and nitrogen fertilizers in Russia), a computational
homogenized model for layered creep materials was developed.
A layered geometry was motivated by the natural sedimentary
structure of potash deposits consisting of many salt layers.
The model is based on Boltzmann-Volterra hereditary theory

[SR9] with kernels of the Abel type. For its derivation, the homogenization approach from [SR10] was
utilized. Direct solution of motion equations requires a fine mesh in each layer of salt, which essentially
prevents direct simulations if many layers are involved. In contrast, a homogenized model needs a rather
coarse mesh as for a uniform structure. However, the quality of the homogenized solution depends on the
number of layers—the more layers, the better it approximates the solution to the original model.

A comparison of numerical results due to homogenized model with the solution to original (non-
homogenized) equations of motion was performed in [9]. It was shown that even 10 layers of each material is
enough to achieve an error of about 5% when the sample has been deformed by 10%-15% already, see Fig. 3.
In [10], a more general model with nonlinear constitutive creep stress-strain relations was considered. For
this model, a homogenization procedure as well as a numerical algorithm for finding displacements and
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stresses were proposed based on partial time discretization. This project was carried out by the group of A.
Shamaev in collaboration with Corr. Member of RAS O. E. Melnik, Prof. V. V. Vedeneev, and members
of their groups from the Institute of Mechanics at MSU and T-Platforms.

Fig. 4 Swimmers in viscoleastic liquid crystal (mucus) [11]. A bacterium (the ellipse aligned horizontally)
”catches” another one that crosses its wake. Left: scalar order parameter (anisotropy level). Right: director field
(local molecular orientation). Circles mark topological defects of the liquid crystal where anisotropy is suppressed.

2.4 Modeling bacterial motion in mucus

Recently, I have been engaged in studies of active matter, a specific type of continuum characterized by
local consumption of energy and usually composed of autonomous agents. In particular, suspensions of
bacteria exemplify such materials. In this research, we are interested in studying bacterial behavior while
they swim in mucus, such as cervical or gastric mucus. While bacteria live throughout the human body,
their main habitat is body surfaces such as skin and covered in mucus organs, e.g. gastrointestinal and
reproductive tracts. To prevent bacterial infections and facilitate the proliferation of symbiotic species, we
need to understand bacterial behavior. By studying bacterial motion, we may find ways to control their
behavior and use this knowledge to our advantage, potentially impacting the treatment of infertility and
the prevention of bacteria-born diseases by developing ways to fight pathogen invasion at mucosal surfaces.

In [11], bacteria were modeled as rigid particles while their activity was represented via so-called
squirmer boundary condition [SR11, SR12]. The mucus itself was described by nonlinear Edwards-Beris
PDEs for liquid crystals coupled with PDEs for conformation tensor representing viscoelastic contribution
to stresses [SR13]. The computational results in [11] shed light on the onset of collective motion, such as
the formation of bacterial ’trains’ (as shown in Fig. 4), as well as on the peculiarities of bacterial motion
in mucus, such as speeding up during back-and-forth motion. Currently, we are modifying this model to
speed up computations by replacing the rigid active particles of finite size with point forces, or dipoles.
This will enable us to simulate collective motion on a macroscopic scale while still tracking each agent
individually. This research is performed in collaboration with Profs L. Berlyand and I. Aronson as well as
members of their groups (Pennsylvania State Univ).

3 Solving Eigenproblems by Varying Length

Fig. 5 Variation of the string’s
length. If the length l of a string is
changed slightly, then the frequency ω
also changes by a small amount.

While working on optimal control problems, it is often necessary to
estimate natural frequencies of the controlled system. This is of par-
ticular importance for elongated rod-like systems such as manipu-
lators, antennas, pipelines, and others, since their vibrational prop-
erties directly affect control efficiency, especially for precise control
methods. As mentioned above, non-damaging quality control and
defect detection are also related to the vibrational (acoustic) prop-
erties of a system in question. A classical way to find the natural

August 2022



Alexander Gavrikov Research Statement, page 4

frequencies of a vibrating object is to solve the Sturm-Liouville problem (a boundary value problem for an
ordinary differential equation) or its analog.

8
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Обозначим размерную характерную величину упругой характеристики f  подложки 
как E .W  Тогда в безразмерных единицах

f E L EI E E L R L R~ / ~ ( / )( / ) ( / )W w
4

0
3 δ

Таким образом, безразмерная величина f  определяется произведением трех харак-
терных параметров – отношения длины трубы к ее радиусу, отношения длины к толщине 
стенок и отношения упругости подложки к упругости трубы. Поскольку упругость мате-
риала трубы (металла) можно оценить как 1011  Па, упругость грунта как −10 106 8  Па, то, 
считая L R/ ~ 10,  δL R/ ~ 10 ,2  получим −f ~ 1 10 .3  Следовательно, в зависимости от 
условий пролегания трубопровода, возможен значительный сдвиг частот для, например, 
жестких грунтов даже вдали от критических значений скоростей.

Проведем анализ возможности увеличения или уменьшения сдвига частот в зависимо-
сти от функции, задающей винклеровское основание. Обозначим собственную частоту 

Fig. 6 Pipeline vibrations [18].
The second natural frequency of a
vibrating pipeline has two possi-
ble values for high velocities of the
transported fluid.

However, if the coefficients of the equation are non-constant (e.g.,
density, rigidity, or geometry vary along the length of the rod), there is
no universal approach to solving such an eigenproblem. Since it is com-
mon to work with dimensionless variables, the studied system’s length is
usually assumed to be equal to 1, and the problem is solved on a fixed in-
terval (0, 1). However, it is a well-known experimental observation that
for many vibrating systems, a small change in the length l leads to a
small change in the eigenvalue λ. For example, changing the length of
a guitar string causes a small change in the tone (frequency), as shown
in Fig. 5. Basing on this observation, S. Nesterov and L. Akulenko had
proposed [SR14] a numerical approach to solution of Sturm-Liouville
problems with non-constant coefficients.

In [12, 13], we generalized the afore-mentioned method to Sturm-
Liouville problems with matrix coefficients that are nonlinear in the spec-
tral parameter (frequency). Such eigenproblems describe coupled rods
undergoing longitudinal vibrations or bending vibrations of an Euler-

Bernoulli beam or other similar system. The technique is based on the shooting method combined with
Newton-type iterations: on each step an approximation to the eigenvalue λi is corrected by its derivative
with respect to the interval’s length: λi+1 = λi + ελ′(li). The formula for the derivative λ(l) is found
explicitly. In [14], this approach was extended to scalar Sturm-Liouville problems with coefficients and
boundary conditions depending on spectral parameter when, for instance, point masses are attached to
rod’s ends. The results of [13, 14] were combined in [15], and, finally, a unifying formula for λ′(l) was
derived in [16] for linear Hamiltonian systems nonlinear in the spectral parameter. The latter extension
allows for finding eigenvalues and eigenfunctions of a wide class of elongated system, e.g. Timoshenko
beams, pipelines, etc, provided self-adjointness and as long as the problem is self-adjoint and coefficients
are reasonably smooth. Major advantages of this approach are (i) quadratic rate of convergence of involved
Newton-type iterations which provides high precision of the results and (ii) a simple code implementation
based on solutions of ODEs (that is, on shooting).

This approach was applied for studying natural oscillations of elongated systems in [17, 18, 19, 20,
21]. A comparison of several engineering models of bending vibrations (Timoshenko, Rayleigh and Euler-
Bernoulli) was done in [17] for a circular beam with quadratically changing radius. Natural frequencies of
a pipeline transporting ideal fluid based on elastic (Winkler) foundation were analyzed in [18], see Fig. 6.
A rotating beam (rotor blade) with polynomial and exponential types geometries was studied in [19]. It
was shown that the developed approach allows for achieving and enhancing precision previously reported
in the literature with relative ease. A classical singular problem of vibrations of a Kirchhoff wedge beam
was considered in [20] in the case when the beam (blade) is rotating and has a crack. Finally, in [21] the
developed method was combined with experimental techniques which allowed for identification of defects
(cracks) of a vibrating rod.

4 Control Problems for Mechanical Systems

4.1 Equipment for crystal growth at the International Space Station

One of the difficulties encountered during crystal growing is the variation in the natural gravitational field.
That causes undesirable inclinations in the crystal axis. This issue can be resolved by moving manufacture
into space where gravity is very small. Theoretically, this allows to grow larger pure crystals needed, for
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example, in semiconductor industry. However, the non-uniform micro-gravitational field is still present on
orbital stations due to residual gravity as well as due to motion and operation of the station.

Fig. 7 Two-axis gimbal [24].

The group developed control algorithms for a two-axis gimbal for a
vibroprotective platform installed at the Russian section of the Interna-
tional Space Station (ISS) to reduce undesirable vibrations.

Our group developed control algorithms for a two-axis gimbal for a
vibroprotective platform, see Fig. 7, supposed to be installed at the Rus-
sian section of the International Space Station (ISS). In [22], a kinematic
control was considered. Quasi-optimal control feedback control laws were
proposed in [23] for a system with one degree of freedom. In [24], the
control problem for the rotatory platform with two degrees of freedom is
reduced to the control problem for an ODE system with nonlinear fric-
tion in the presence of uncertainties and an appropriate feedback control
as well a filtration algorithm of the incoming data were proposed. As far
as I know, the vibroprotective platform is currently operational at the
ISS. This project was carried out in collaboration with Dr. A. E. Borisov
(Central Research Institute of Machine Building—TsNIIMash), L. Aku-
lenko and Corr. Member of RAS N. N. Bolotnik (IPMech, MIPT). For
the paper [22], the authors were awarded with Nauka-Interperiodika (the
publisher of Russian Academy of Sciences’ journals) prize.

4.2 Controlling temperature distribution via thermoelectric converters

Fig. 8 Experimen-
tal setup: a thin
Peltier element b/w
two aluminum cylin-
ders. The cylinders
are thermally insulated
at the ends, the tem-
perature is measured at
several points on cylin-
ders’ sides.

With the development of microelectronics, some well-known physical phenomena
have found their way into everyday practice. The thermoelectric effect, which en-
compasses the Peltier, Seebeck, and Thompson effects, has been widely used in
engineering through the implementation of thermocouples, thermoelectric genera-
tors, and coolers. These devices are responsible for converting heat into electricity
and vice versa. In short, the Peltier effect produces heating or cooling at an electri-
fied junction of two conductors with different physical parameters (known as Peltier
coefficients). The Seebeck effect works in the opposite direction, causing electric
current in the presence of a temperature difference, while the Thompson effect
creates an additional heat flux if the Seebeck coefficient depends on temperature.
Various devices based on these effects (e.g. Peltier elements, also called Peltier
devices, coolers, etc.) are used in laboratory equipment, industry, and consumer
products as miniature coolers and temperature controllers [SR15, SR16]. Exam-
ples of these devices include those used in the Mars Curiosity rover, telescopes,
dehumidifiers, water collectors, and beverage coolers.

A Peltier element (PE) is typically a thin, flat device consisting of small ”ther-
moelectric legs” connected in series and placed between two plates. When an electric
current is applied, one plate is heated while the other is cooled, and if the current
direction is reversed, the roles of the plates swap. Additionally, if one side is heated
or cooled by an external source, an electric current will appear in the circuit, which
leads to coupling between the controlled system and the actuator, with electricity
producing heat and vice versa. Initially, Prof. G. V. Kostin (IPMech, MIPT) and
I considered a simplified linear model without coupling. In [25], we used the heat
flux as a control input to develop an explicit LQR-type feedback control of the

lowest eigenmodes for a cylinder actuated from the top and bottom sides. This eigenmode approximation
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was enhanced in [26], where we utilized polynomial approximations of the temperature and proposed an
LQR feedback control strategy that minimizes both the deviation from the desired distribution and the
approximation error.

Next, in collaboration with Prof. Dr.-Ing. H. Aschemann (Univ Rostock—UR) and Prof. Dr.-Ing. ha-
bil. A. Rauh (UR, now Carl von Ossietzky Univ of Oldenburg), we developed a control-oriented model
of a PE [27, 28]. The PE is placed between two solid bodies, one treated as a heat sink and the other
as a working body in which a certain temperature distribution is desired. The heat processes in these
bodies are described by standard heat equations, while the heat equation for the PE contains a nonlinear
term depending on both temperature and control voltage. The three equations are coupled by boundary
conditions on the sides of the PE that include another nonlinear term.

For an experimental cylindrical setup shown in Fig. 8, identification of parameters and model validation
were performed in [29] by using FEM and in [30] by means of model order reduction. In [27], stationary
states of the considered setup were investigated. A partial feedback linearization that makes PDEs linear in
temperature (although still nonlinear in the control voltage) was proposed in [31]. Also in [31], a combined
control strategy that exploits the feedback linearization and piecewise constant feedforward control of the
system’s lowest eigenmodes was proposed. The optimal signal was computed via gradient descent. This
strategy was enhanced in [32] by compensating for the varying ambient temperature (of the environment)
via an additional feedback term in the control signal. Constrained control was studied in [33], where a
penalty cost functional was proposed to enforce the constraints. Finally, the minimal control time was
estimated in [34].

4.3 Motion control for elastic systems and smart structures

Fig. 9 Scheme of a rod controlled by boundary
(f±N±1(t)) and distributed (f−N+1(t), . . . , fN−1(t)) in-
puts. The piezoelectric force f(t, x) acts effectively
through the force jumps f−N (t), f−N+2(t) . . . , fN (t)

Elongated elastic systems, such as manipulators,
machine parts, and construction elements, have
long been one of the foci of applied control the-
ory due to their importance in practical applica-
tions. In [35], the method of solving eigenproblems
described in Sect. 3 was used to propose an LQR-
type control approach for a vibrating non-uniform
string (a chain) with a load at the end, such as one
hanging from a crane. This strategy was improved
in [36, 37] by incorporating a ”slow” feedforward
control input that asymptotically does not excite
vibrations. In [38], a combination of eigenproblem solution and the ”slow” control was proposed for a
beam with an attached tip mass (a manipulator with a load) moving in a plane and undergoing bending
vibrations.

Recently, in collaboration with G. V. Kostin, we began studying elongated elastic systems controlled
by finite-dimensional distributed in space inputs. While lumped boundary inputs are rather suitable for
practical implementation using drivers (e.g. attached at the ends of a rod), the distributed inputs provide
a substantial mathematical advantage. However, it is more challenging to apply them in practice because
they require continuous force along the rod. Thus, we assume from the beginning that the distributed force
is piecewise constant (i.e. finite-dimensional) in space, having in mind implementation via piezoelectric
actuators. That is to say, identical piezoactuators are placed along the rod symmetrically (e.g., in pairs)
such that there is no empty space between them. These setups are sometimes referred to as ”smart
structures” [SR17]. For simplicity, we do not consider a particular model of piezoelements (e.g., the IEEE
standard model [SR18]) understanding the distributed control inputs as additional normal forces acting on
the rod’s cross-section.
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In a preliminary study [39], we developed a feedforward control approach for a rod undergoing lon-
gitudinal vibrations without piezoelements actuated by boundary inputs only. By utilizing the method
of integro-differential relations [SR19], the wave equation in [39] was replaced with a variational problem
in the time-space domain. The latter problem serves as a constraint in the optimal control problem of
minimizing the mechanical energy stored in the rod during motion while reaching a prescribed terminal
state. A peculiarity of our approach is that we use two unknown variables, namely, displacements v and
so-called dynamic potential r, which are related via differentiation with momentum density and normal
force in the cross-section. Such an approach allows us to relax the smoothness conditions on the initial
data while still finding an optimal trajectory among continuous functions. The optimal control is found
explicitly by solving the Euler-Lagrange equations. To this end, we introduce a mesh induced by charac-
teristics on the time-space domain. The unknown functions v and r are represented as linear combinations
of traveling waves. The boundary conditions interweave these traveling waves with the control inputs. The
minimization problem for the mechanical energy is rewritten in terms of the traveling waves and results
in the Euler-Lagrange equations. Finally, the minimal control time is determined. In [40] this control
strategy was enhanced by additionally minimizing the energy norm of control forces.

Fig. 10 Mesh on the time-space domain. Addi-
tional characteristics emerge due to actuators [41].

In [41, 42, 43, 44] this technique has been further en-
hanced to account for distributed inputs (i.e., piezoele-
ments). A detailed description can be found in [41]. The
mesh on the time-space domain now incorporates addi-
tional characteristics that emerge due to distributed ac-
tuators, see Fig. 10. Correspondingly, a larger number of
traveling waves are defined, and new interelement con-
tinuity conditions arise that involve distributed inputs
(more precisely, their jumps, see Fig. 9). The interele-
ment, initial, terminal, and boundary conditions lead to
an overdetermined linear algebraic system. This system
is explicitly resolved for terminal times greater than a
minimal one in terms of control functions and some of
the traveling waves. The solution is plugged into the
objective functional, and then the Euler-Lagrange equa-
tions are integrated also explicitly. A particular case

where the control time is a multiple of the piezoelement’s length is considered in [42]. Another special case
is studied in [43], where the rod with free ends (actuated by only the distributed inputs) is studied, and the
terminal state is assumed to be periodic. In [44], the squared norm of the control functions is minimized
in addition to the mechanical energy.

Since piezoelements may serve as both actuators and sensors, a feedback control strategy was studied
in [45], where the eigenmode approach was utilized. It was shown that the original continuous system splits
into a finite number of independent groups of modes, and each of these groups is controlled by a specific
linear combination of inputs. An LQR-type feedback control algorithm was proposed that minimizes the
amplitudes of the lowest eigenmodes in each group (except for the motion as a rigid body). The optimal
control functions are found explicitly. To estimate from above how the highest modes are actuated by the
optimal signal, an asymptotic feedback control was proposed.
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5 Application of The Diffraction Theory: Manufacturing Semiconduc-
tor Devices

In the project devoted to the development of alternative methods for producing integrated circuits (ICs)
in the microelectronics industry, a practical application of the diffraction theory was undertaken in the
framework of a startup founded by Prof. V. Rakhovsky (Nanotech SWHL GmbH). One of the main steps
in IC production involves projection of the desired IC pattern through a mask onto a wafer covered with
light-sensitive material (photoresist) [SR20]. The idea we implemented was to replace the usual projective
mask with a holographic mask. The projective mask, in the simplest case, repeats the desired pattern. In
contrast, the holographic one is a result of interference of the light from the pattern and a coherent light
source and does not have clear similarities with the original image [46]. The holographic mask creates 3D
patterns in a single exposure and is cheaper in production being highly sustainable and low sensitive to
defects (see Fig. 11) which are one of the major issues in mask exploitation. Due to diffraction, an aerial
image that a mask produces does not exactly repeat the desired pattern. In projective lithography, this
problem is resolved by correcting the mask physically (adding small elements and complex supplementary
layers).

Fig. 11 Holographic mask and an
image it produces. A relatively large
defect—black square—on a holographic
mask (left) almost does not affect the re-
sulting image (right) [48].

The Sub-Wavelength Holographic Lithography (SWHL) ad-
dresses this issue computationally [47]. The holographic mask is
optimized during its computation. As a result, the manufacturing
process of the optimized mask is not different from the production
of the non-optimized one [48]. Both are represented via a number
of holes in the non-transparent layer [49]. Even if supplementary
layers are needed, they are much simpler than in projection lithog-
raphy. It is also easier to position the holographic mask in the
optical scheme [50]. During my involvement in this project, we de-
veloped appropriate numerical software for calculating holograms
based on modified Fourier transform for experimental validation
and for the optimization of holograms by utilizing gradient descent
and local variation methods. The results of experimental valida-
tion of this software were published in [SR21, SR22]. In addition to
[49, 50], the invention was also patented in [51, 52, 53, 54]. Nowa-
days, the startup company Nanotech SWHL GmbH continues its
work in Zurich, Switzerland, in collaboration with Swiss Federal Laboratories for Materials Science and
Technology (Empa), Swiss National Supercomputing Centre (CSCS), Fraunhofer Institute for Electronic
Nano Systems, JEOL Ltd, and CEA-Leti.

6 Future work

• In light of the overview of mechanics of inhomogeneous continua provided in Sect. 2, the study of
bacterial motion in mucus presents a wide range of research opportunities. Currently, I am developing
a model and respective computational algorithms to capture both individual and collective motion.
I plan to utilize this approach to (i) model ”ant trails” when several bacteria follow a leading one
that burrows a tunnel in mucus; (ii) simulate memory effects such as ”stop-and-go” motion when a
bacterium slows downs and then speeds up if stresses overcome certain threshold; and (iii) identify
spatial and temporal scales of collective motion. I also expect that these algorithms can be used
for numerical homogenization of bacterial suspensions to reveal, for example, how bacteria affect the
elastic properties of mucus.
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• I plan to extend the eigenproblem solution algorithm described in Sect. 3 to 2D vibrating elastic
systems such as rectangular plates. This can be accomplished by employing an ”iterative” separation
of variables approach: virtually cutting the plate into strips, solving a number of eigenproblems
first in one direction and then in another direction until the resulting approximation is close to the
exact solution. Another direction of studies is to overcome the numerical difficulties of dealing with
high-frequency oscillations for beams and rods, where the shooting requires too high precision.

• Regarding control problems in heat transfer, see Sect. 4.2, I plan to continue this research in two
directions: (i) controlling 2D and 3D temperature distribution in solids by means of several Peltier
devices attached, (ii) studying a solid ”heat pump” that does not require a liquid refrigerant and
consists of several cylinders connected in series with Peltier devices between them. While direction
(i) may be more interesting for specific applications, direction (ii) is more promising in terms of
analysis. Such a system is essentially one-dimensional, which makes it possible to study the control
problem in terms of eigenfunctions. Furthermore, homogenization techniques can be applied if the
number of cylinders and Peltier actuators is large enough.

• Finally, I plan to use approaches developed in Sect. 4.3 to (i) combine feedforward [41] and feedback
[45] controls for the longitudinal motion of a rod; (ii) develop feedforward control strategies for
bending vibrations of beams and motion of inhomogeneous rods; and (iii) study the limiting behavior
of vibrating elastic systems controlled by distributed inputs. Direction (i) is conditioned by the
necessity to compensate for disturbances during the optimal motion. While an analytical solution
based on traveling waves developed in [41] cannot be applied directly for (ii), a similar approach based
on a finite element mesh on the time-space domain may still be used. The direction (iii) is particularly
interesting since it may answer questions on how well a theoretical infinite-dimensional distributed
control input can be approximated by a finite-dimensional one and what functional properties the
limit of the finite-dimensional input has when the number of control elements goes to infinity. In the
latter case, homogenization techniques may also be applied.
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