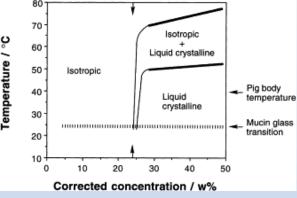
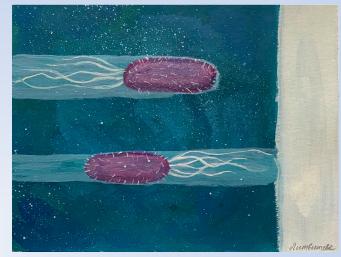
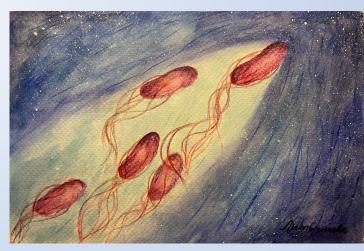

Alexander Gavrikov: Visual research portfolio


Bacterial motion in mucus (e.g. cervical, gastric)

- Investigating bacterial motion in mucus contributes to better understanding and potentially mitigating infectious processes in organs lined with mucus
- Bacterial motion in mucus strikingly differs from water: bacteria 'burrow' tunnels and form 'bacterial trains'

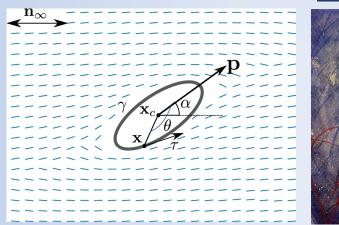

Mucus

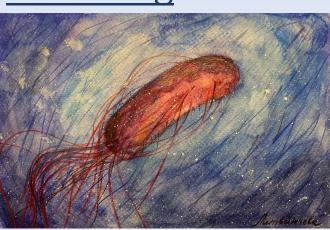
Besides memory effects, mucus shows liquid crystalline (LC) properties at high concentrations of mucin—long polymer molecules that forms a network



Mucin [Martínez-Sáez et al, Chem Soc Rev 2017] [Davies & Viney, Thermochimica Acta 1998]

Bacteria "burrow" transient tunnels in mucus: a sketch

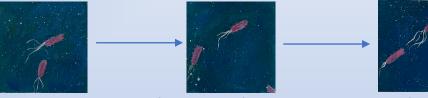

Bacteria swim as a group: a sketch

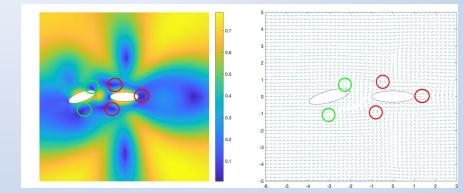

Modeling: Mucus

Mucus is modeled as viscoelastic (VE) liquid crystal via

2 nonlinear tensor partial differential equations (PDEs) + Stokes equation describing the flow of mucus (contains LC elastic and VE stresses) [Hemingway et al, PRL 2015]

Modeling: Bacteria

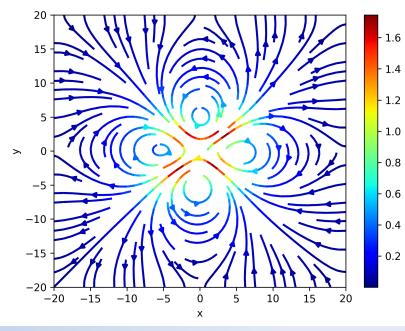


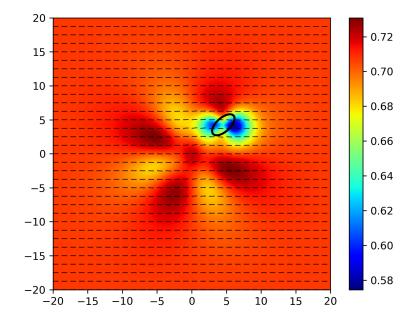

- Several bacteria—each bacteria is modeled as a rigid body
- Many bacteria—each
 bacteria is modelled as a
 point source

Bacteria (right) is modeled as a rigid body (left), see Chi, **Gavrikov**, Berlyand, Aronson. Interaction of microswimmers in viscoelastic liquid crystals. *Commun Phys* **5**, 274 (2022).

https://doi.org/10.1038/s42005-022-01056-1

Results in this paper explain formation of bacterial trains via suppression of anisotropy and interaction of defects

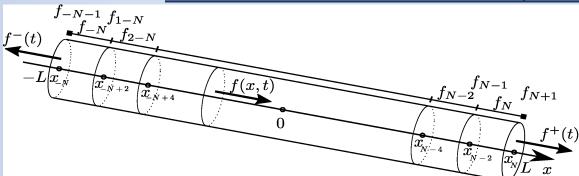



Bacterium catches another one in its trail, and they travel together head-to-tail

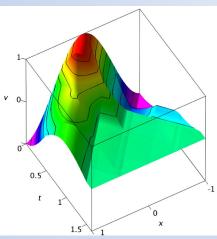
Current work: collective bacterial motion in mucus

Bacteria are modeled as point sources. Then the time-dependent PDEs can be solved via Fast Fourier Transform on GPUs

Viscous dipole: streamlines


Elastic point force: nematic field and anisotropy level

Preliminary results:


- viscoelasticity enhances collective effects
- easier to form clusters/more stable clusters
- tunnels (zone of suppressed anisotropy) are 'open' for a longer time

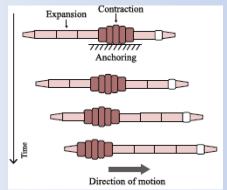
Smart structures: controlling longitudinal motion

of elastic bodies via piezoactuators

N identical piezoactuators attached to a rod along its length; driving forces are applied at rod ends, see G. Kostin, A. Gavrikov Optimal Motions of an Elastic Structure under Finite-Dimensional Distributed Control arXiv:2304.05765 [math.OC]

<u>Main challenge:</u>

 Control of infinitedimensional system via finite-dimensional input

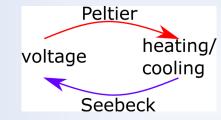

Main results:

- Variational formulation of the optimal control problem
- Analytical solution via traveling waves

Applications:

- Accurate horizontal instrument alignment
- Active vibration damping
- Frequency filtration

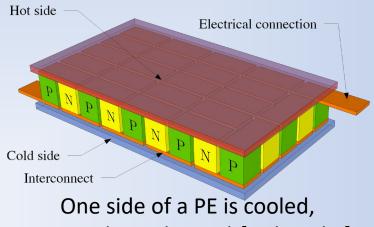
Biomechanical analogue: peristaltic locomotion

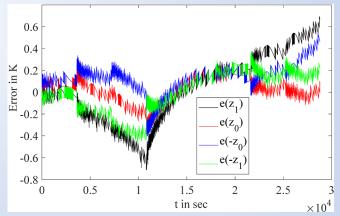

[Masuda et al, Biomimetic and Biohybrid Systems, 2018]

Controlled motion of the rod: displacements reach zero terminal state

Controlling temperature distribution via

thermoelectrical converters


Thermoelectrical converters, in particular, Peltier elements (PE) transform heat into electricity and vice versa due to Peltier and Seebeck effects


Experimental setup: 1 PE between 2 cylinders

Main results:

- A control-oriented nonlinear PDE model of the PE-solid body system has been proposed and experimentally verified
- Several numerical control algorithms, including constrained optimization, have been developed for a two-body system with one PE in between. This allows for obtaining a desired temperature distribution in one body, while the other serves as a heat sink

another is heated [Wikipedia]

Experimental validation:

the model's mismatch is on the order of magnitude of ambient temperature variations