

OPEN QUESTIONS

OPEN QUESTIONS

Multimessenger Analysis: The Ingredients

GW and neutrino detectors are "all-sky"

"all-sky" GW+v search

Neutrinos allow better pointing for EM follow-up searches

prompt search for significant events

SENSITIVITY TIMELINE

Aasi et al. 2013

	Estimated	$E_{\rm GW} = 10^{-2} M_{\odot} c^2$				Number	% BNS Localized	
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5 \mathrm{deg}^2$	$20 \mathrm{deg}^2$
2015	3 months	40 - 60	_	40 - 80	_	0.0004 - 3	_	_
2016-17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017–18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12
2019+	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 - 8	8 - 28
2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48

MULTIMESSENGER ANALYSIS: THE INGREDIENTS

Cataloging on the fly

- Can we make a catalog in the right time frame, distance range and sky area?
 - ✓ 1 week
 - ✓ 200-500 Mpc
 - √ 100 deg²
- Extended H-alpha survey (R-band comparison)
 - We only want to find galaxies within horizon distance
 - We don't necessarily need more info than this as long as catalog is complete
- Meter class telescopes work.
- Don't need very high completeness (Hanna+ 2014)

astrophysical search optimization

Coincidence time window: 500s

GRB EMISSION EPISODES (PRECURSORS)

Automated survey of BATSE, Fermi and Swift GRBs (2710)
Conclusion --- precursors likely from same central engine activity

NEUTRINO — GAMMA-RAY CORRELATION

 10^{-3}

Gamma-ray --- neutrino emission mechanism is connected → temporal correlation

--- GRB fluence & neutrino fluence linearly correlated (117 GRBs, from Hummer+ PRL 2012)

Using temporal correlation can decrease False Alarm Rate by x100

Discovery potential for GRBs = 1 TeV neutrino ~ few GeV neutrino

 10^{-2}

FAR / FAR

 10^{-1}

Bartos+ PRL 2013

Bartos, Marka PRD(R) 2014

DETECTION PROSPECTS: ICECUBE+DEEPCORE

Expanding the GW horizon distance with astrophysics

Beyond the GW horizon distance with astrophysics

1.5

Neutron star mass $[M_{\odot}]$

2.0

2.5

1.0

0.5

Detection rate improvement
All-sky 14%
External trigger 61%

