

Follow-up of ANTARES neutrino alerts

D. Dornic CPPM

AMON - PennState - 02/12/2015

ANTARES:

ANTARES in numbers:

- 12-line data taking since 2008
- o(7500) detected neutrinos
- Angular resolution: 0.3-0.4° (median)
- Effective area: $\approx 1 \, \text{m}^2$ @ 30 TeV
- Visibility: ¾ of the sky, most of the galactic plane
- Real-time data processing

ANTARES:

ANTARES in numbers:

- 12-line data taking since 2008
- o(7500) detected neutrinos
- Angular resolution: 0.3-0.4° (median)
- Effective area: $\approx 1 \, \text{m}^2$ @ 30 TeV
- Visibility: ¾ of the sky, most of the galactic plane
- Real-time data processing

Multi-messenger program:

+ Common ANTARES/IceCube analysis

Multi-messenger program:

<u>Time-dependent searches</u>:

- GRB [Swift, Fermi, IPN]
- Micro-quasar and X-ray binaries [Fermi/LAT, Swift, RXTE]
- Gamma-ray binaries [Fermi/LAT, IACT]
- Blazars [Fermi/LAT, IACT, TANAMI...]
- Crab [Fermi/LAT]
- Supernovae Ib,c [Optical telescopes]
- Fast radio burst [radio telescopes]

Multi-messenger correlation:

- Correlation with the UHE events [Auger]
- Correlation with the gravitational wave [Virgo/Ligo]
- 2pt-correlation with 2FGL catalogue, loc. galaxies, BH...

Real-time analysis:

- TAToO: follow-up of the neutrino alerts with optical telescopes [TAROT, ROTSE, ZADKO, MASTER], X-ray telescope [Swift/XRT], GeV-TeV γ-ray telescopes [HESS] and radio telescope [MWA]
 - Online search of fast transient sources [GCN, Parkes]
 - SNEWS: MeV neutrino from SN

Common ANTARES/IceCube analysis

Point-source analysis using the ANTARES 2007-2012 and the IC40, IC59, and IC79 samples for the Southern Hemisphere

Online processing:

- Triggering & online reconstruction: ~3-5 s
- Alert transmission: ~1-10 s depending on the telescope response
- Telescope slewing: ~1-5 s

Minimum delay between the 1st image and the neutrino: ~20 s

Angular performances:

Trigger	Angular resolution	Fraction events in fov	Muon contamination	Mean energy
HE	0.25-0.3°	96% (GRB) 68% (SN)	<0.1%	~7 TeV
Directional	0.3-0.4°	90% (GRB) 50% (SN)	~2%	~1 TeV

Alert messages:

Neutrino alerts:

~175 alerts sent to the robotic telescopes 11 alerts to Swift/XRT

[2 triggers based on single neutrino (HE,+dir)]

Telescopes:

Telescopes:

Efficiency of prompt observations vs location on the Earth

Telescopes:

Main results:

Model-independent searches in images

Early observations (<20h)

Visible:

- 42 alerts analyzed 01/2010-01/2015
- =>10 alerts with delay <1min (best: 17s)
- => no transient candidate associated to neutrinos X-ray:
- 10 alerts analyzed 06/2013-09/2015
- => average delay ~5-6 hours
- => no transient candidate associated to neutrinos
- => constrains on origin of individual neutrinos

Mid-term observations (T+1 -> T+60 days)

80 alerts analyzed 01/2010-01/2015 (+20 ongoing)

- => no transient candidate associated to neutrinos
- => constrains on Ando&Beacon ccSN model

ANT150109A:

Alert "very HE" sent automatically in <10s to TAROT, ZADKO, MASTER and Swift/XRT

Time: 2015/09/01 07h38m25s UT

RA (J2000): 16h 25m 42s (246.3064d)

DEC (J2000): -27d 23m 24s (-27.4684d)

Uncertainty of 18 arcmin (radius, 50% containment)

Neutrino:

run/ev: 81802/377262

Lambda = -4.29Tchi2 = 1.2costheta = 0.85 (31.8d) Diff BB-AA = 0.14deg

Nhit = 127 Amp = 356 Nline = 8

No other muon event in 5deg around the source

With MC Nu events: <E> > 60 TeV

Follow-up with Swift/XRT:

8 sources in the field, 5 catalogued/3 new (2 not passing cuts)

Follow-up with MASTER:

MASTER telescopes are our main optical follow-up facility. (very large field of view 4dx2d)

First observation with SAAO at **T+35100s**

=> found a lot of transient sources because presence of M4

Continuous follow-up since the first day with 2 telescopes in south Africa and Canarias (filter R and now filter B and V)

Main questions:

=> Request more multi-wavelength observations

Follow-up with Swift/XRT:

MASTER follow-up: (atel #8000)

```
from 2015-Â09Â-01 17:23:48
                                         unfiltered (w=0.2B+0.8R USNOB1 calibrated)
MASTER-SAAO
             up to 2015-09-01 20:25:18 18.5-19.8 (180s),20.6 (540s)
                                        m B lim=19.1(180s), 19.6(540s)
MASTER-SAAO from 2015-09-03 17:13:59
                                        m V lim=19.3(180s), 19.9sum(540s)
             up to 2015-09-03 21:21:59
                                         m R lim=18.4-19.0(60-180s), 19.7-20.3(540s-1800s)
                                         m I lim=17.5-18.0(180s), 18.5(540s)
              from 2015-09-01 21:02:44
                                         unfiltered m lim=18.7-19.2(180s), 19.8(540s)
MASTER-IAC
              up to 2015-09-01 21:17:34
              from 2015-09-03 20:08:40 m B lim=19.8(180s)
MASTER-IAC
              up to 2015-09-03 22:09:12 m V lim=18.6(180s)
```


Multi-wavelength observations

=> Necessary to characterize the star and test the association between X-ray flare and the bright star

16 Atels telegrams + 6 GCN notices:

- * MASTER, Pan-STARRS, SALT, NOT, WiFeS, Kepler 2, CAHA, LSGT, Nishi-Harina NIR, VLT/Xshooter, IRIS...
- * MAXI, Integral, GBM
- * Jansky VLA
- * IceCube

Not reported LAT, HESS, HAWC Contacts with RATIR, GROND, Chandra...

Association star/X-ray flare

Multi-wavelength observations => characterisation of the star

NOT: 2.5m La Palma + FIES spectro: 3x400s + NOT IR cam: 4x120s

Atel 7994

=> Young accreting G-K star undergoing a flaring episode

SALT: Atel 7993

- => Rapidly rotating late K-early M type star
- => Chromospheric activity + marginal evidence of periodicity 6.5-8.9h

WiFeS: ANU 2.3m Australia Atel 7996

- => Spectrum shows late-type (K5-K7) dwarf star
- => Periodicity of ~1.5 days -> may be binary activity

CAHA: 2.2m (+BUSCA) & 3.5m (+TWIN) Spain Atel 7998

=> non detection of HeI and H-lines rules out classical T Tauri star

Association star/X-ray flare

Multi-wavelength observations => characterisation of the star

Jansky VLA: radio 1-2 GHz (T+2.6 days), FOV=30arcmin

Atel 7999

- => No variability down to 200 microJy + No new source
- => Assuming distance of 140 pc, X-ray luminosity= $2\ 10^{30}$ erg/s and radio luminosity = $3\ 10^{15}$ erg/s/Hz
- => Consistent with RS CVn binary system or a rapidly rotating young stellar object
- => Bright star associated to the X-ray flare (100-150pc).
- Age: ~10 Myr Mass: ~0.75 M_{sun}
- => Therefore, very low probability of being associated to the neutrino

Association star/X-ray flare

Computation of the chance association probability

ROSAT catalogue (<300pc & star $10^3 L_{x,O}$)

Rho Ophiuchi SFR

=> enhanced X-ray star density

=> 0.5-0.75 star per square degree.

=> few flares per yr

To be refined: pbm ROSAT catalogue not really adapted. (Try stellar formation code of Besancon)

Case of the globular cluster M4

M4: closest globular cluster from Earth (2.2kpc) at around 0.8 degree from the neutrino location (still inside the 90% error box)

Contains millisecond pulsars and massive black hole. => interesting objects with known relativistic acceleration

Fermi/LAT

no catalogued source find in the neutrino error box

HESS

ToO proposal (cat. A)
Night 03-04 September:
HESS II+3 HESS I (112 min)
elevation = 37.5-60.2deg
=> No source detected in
the fast analysis (only
HESS1)

=> For the refined results, we have to wait few weeks

HAWC

HAWC: no transient

Summary

- Strong multi-messenger program
- TAToO program working stably since 2010 with capabilities to send alerts in <10s and 0.3° error box
- Efficient collaborations with TAROT, ROTSE, ZADKO, MASTER, Swift

1st GCN/A-Tel notice send by ANTARES in real-time

- => Real-time follow-up is the key
- => very positive answers of the astronomer community (>20 multiwavelength observatories)
- => Excellent test case to optimize future follow-up (neutrino, GW...).