VERITAS as a Triggering and Follow-up Facility

Jeremy S. Perkins for the VERITAS Collaboration

Very Energetic Radiation Imaging Telescope Array System

- Array of four 12 m imaging atmospheric Cherenkov Telescopes
 - Located in southern Arizona
 - Operational since 2007
- energy range: 85 GeV to >30 TeV
- field of view of 3.5°
- angular resolution ~0.1°
- slew speed 1 deg/s
- peak effective area: > 2x10⁵ m2
- point source sensitivity: 5s detection at 1% Crab in ~25 h (10% Crab in 25 min)

Observing with VERITAS - sky view

VERITAS operates from mid-September through early-July

Observing with VERITAS - duty cycle

28 days moon cycle

- 970 hr/yr of 'normal' operations (dark and moderate moon light)
- 110 hr/yr of reduced highvoltage (RHV) operations (~35-65% moon illumination)
- ~180 hr/yr of RHV & UV filter (UVF) operations (>65% moon illumination)

UV filters pass 30% of Cherenkov light but only 10% of NSB

Observing with VERITAS - Response

VERITAS as a Follow-up Facility

 Since IACTs have limited FoV we point at interesting things during interesting times:

- Gravitational Wave Counterparts
- Galactic Sources ← Novae, Supernovae, Binaries, The Crab, ...
- Novel Triggering ← Hard X-ray flares (BAT), LAT HE photons, ...
- Flaring LAT Sources

Gamma-ray Bursts

- VHE emission is predicted in many scenarios
- Can constrain emission models without detections
- May test EBL models with detections (wouldn't this be burying the lede?)
- Fermi-LAT has detected up to 147 GeV (95 GeV) in the burst (Earth) rest frame

_AT sees ~1 burst per year like this

Gamma-ray Bursts

- GRBs have been a priority for VERITAS since day 1
- GCN socket connection integrated with VERITAS tracking and control software and the median (unconstrained) response is < 160 s (record is 75 seconds)
- Observe for the first hour for all bursts with $r_{68} < 10 deg$
 - Look for prompt and early afterglow emission
 - GRBs are the highest priority targets
- Keep observing for two more hours for bursts with a good position (r_{68} < 1deg)
 - Look for emission associated with 'late' X-ray flares
 - Can occasionally yield to other high priority, time critical projects like ToOs or MWL campaigns
- Observe some special bursts at late times
 - Bright bursts like GRB 130427A
 - Pre-approved ToO that does not require a TAC response

Gamma-ray Bursts - 132 Bursts!

- ~93 bursts with a position < VERITAS PSF (Swift, Integral)
- ~40 bursts with position ≥ VERITAS PSF (Fermi-GBM)
- ~7 bursts with *Fermi*-LAT detections
 - Several prompt
 - Two several hours later
 - Constraining limits from GRB 130427A: ApJL 795, L3 (2014)
- Other limits:
 - ApJ 743, 62 (2011)
 - Taylor Aune's PhD thesis (2012)

Ф(15 GHz) 6(0.1-100 GeV) Φ (V) $\times 10^{-15}$ 10^{-8} cm² s⁻¹ erg cm² s⁻¹ Å⁻¹ 57150

Example: AGN/LAT Follow-up

- PKS 1441+25: distant (z = 0.939) FSRQ detected by MAGIC on 2015-04-20 and then by VERITAS on 04-23.
- (not going to talk about the physics but about how this happened)
- Triggered by a small LAT flare.
- The VHE detection happens during a hardening of the LAT spectrum (could be a way to find these in the future).
- The result is a huge MW data set with lots of interesting features (high polarization, hard GeV spectrum during a VHE detection, full coverage of HE peak, measurement of the full SED, EBL implications, emission region implications, correlations between bands) and two (for now) papers.

Example: Gravitational Waves

- MoU in place to perform follow-up observations of gravitational wave (GW) candidate events.
- These alerts are received similarly to GRB alerts.
- We are in currently working through the details of how to handle the expected large localization errors (this is similar to the GBM situation).
- A GW trigger with an E-M counterpart has highest priority for VERITAS observations.

How to Engage

- Contact a VERITAS Team Member and work on an internal proposal together:
 - Time Allocation Committee meets in the fall,
 - Director's Discretionary Time is also available.
 - Remember! Moonlight/RHV/UVF/short exposures are VERY easy to get time on (just need a few sentences justification)
- Become a VERITAS affiliate member
 - Can work on projects within the VERITAS collaboration.
- Work with the Spokesperson to develop a Memorandum of Understanding:
 - Longer process but more automatic.
- Apply for time through the Fermi GI program:
 - Limited amount of time available but funds are also available,
 - Science must be relevant to Fermi.