High Altitude Water Cherenkov
Gamma-Ray Observatory

HAWC Real-Time Searches

Tom Weisgarber
4th AMON Workshop
4 December 2015



tude Water Cherenkov
mma-Ray Observatory

High Alti
Ga

Flare search motivation

- Blazars are known to produce extreme flares that can exceed their

quiescent emission by large factors

- Flares at the highest energies may not have lower energy counterparts or
be caught by pointed instruments: a TeV survey instrument is needed

- Extreme flare of PKS 2155-304 in

July 2006: how many similar flares

have been missed?
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Mean rate (Crab units)

- History of Mrk 421 reveals several
strong flares: is this rate biased by
the observing strategy?
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HAWC

 High Altitude Water Cherenkov
Observatory recently completed
 Provides TeV survey
capabilities for a large fraction
of the sky
» Best sensitivity to sources
between -6° and +44° in
declination
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. Sensitivity drops by a factor of 2 for sources
\ transiting around 25° from zenith .

N
N

50 mCrab

Flux > 2 TeV [cm'2 sec'l]
o

10-13 | |
-20 -10 0 10 20 30 40 50 60

Abeysekara et al. 2013, Astropart. Phys. 50-52, 26 Declination [deg] 3 /16



) HAWC flaring sources

High Altitude Water Cherenkov
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}fwﬁ The HAWC Flare Monitor

 Primary goal is to issue real-time alerts as soon as a flare is detected from
a selection of gamma-ray source candidates
 Sources in the selection are divided into classes based on the
probability of gamma-ray flares occurring
- We plan to consider an all-sky approach after monitor comes online
- Data analysis occurs at the HAWC site
- No delay in waiting for data to arrive at data centers
e Fully compatible with optimized offline analysis
» Searches for flares only
- Sensitivity unaffected by the presence of quiescent emission
- HAWC is a young instrument; many plots here are subject to change
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HAWC survey capabilities

-« HAWC sensitivity and duty cycle depend on source declination
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» Scaling signal by the measured

strength of the background
eliminates effects due to the
source transit
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 Currently refining source selection (Galactic sources will be excluded in
first pass)
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}Wﬁ Flare monitor implementation

- Flare monitor employs a method inspired by the Bayesian block
algorithm (Scargle et al. 2013, ApJ 764, 167)
- Data are partitioned into blocks consistent with a constant rate
based on a fitness function (usually the log likelihood)
- Change points occur at the edges of the blocks and are taken to be
flares
« The algorithm runs over a sliding buffer of 600 minutes with 2
minute resolution (subject to change)
- The false positive rate is controlled by a prior parametery (o <y <1)
which penalizes representations with large numbers of blocks
 The normalized prior probability for n blocks when there are N
observations is: I —~

- Since the false positive rate must be low, y must be very small, and the
full algorithm is unnecessary: we therefore test only the presence of a

single change point 8 /16



}ﬁwﬁ Flare monitor implementation

« A typical HAWC observation yields a number of on-source counts n; and a
number of off-source counts, m;
- The likelihood of the data given a Poisson model for the counts is then

)\nz 6—)\7; ,umz 6—,u@-
L(ng;, mg| A, p;) = : :
o) = (7025 17) (S 1)
 To account for the source transit, we re-cast the likelihood in terms of the
signal to background ratio g;::

(Ais i) — (C_Ii = '.,/M;)

« And write the fitness for a block Bk of d observations to be constant as:

d
f(Br) =) InLP(g; = q, ps)
1=1

» Source transit dependence is eliminated, provided that the gamma-

ray and cosmic-ray zenith angle responses are the same o /16
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}fwﬁ Flare monitor implementation

 Multiple analysis bins are easily accommodated: simply add the fitness
contribution for each bin

» We restrict contributions to the fitness to points where the signal to
background ratio increases

2 Fedentury” priors 1 false 3 * When the number of monitored
210°epositive per monitored 3 sources is large, the false positive
¢ [ source per 100 years 9 rate must be set very low
% \ =« Derive false positive rate from
e e 3 data by taking the background
10— — counts as the true Poisson mean
10_ _ and sampling both on-source
1 and off-source counts based on it
‘O_ =« This procedure enables us to
bbb e M 0] simulate centuries of data
Log10(prior)
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% Flare monitor sensitivity
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- Sensitivity for a given false positive rate is determined by simulation:
inject flares scaled to Crab Nebula excess

 Excess ratio can depend on the analysis bin (2 shown for clarity)

 Rapid detection is important for follow-up observations
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}rﬁ Example alert email
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attached plots (shown later)

Thomas Weisgarber -- UW Madison <twem>

to ianwisher, westerhoff, weisgarber, me |~

- estimates of
Found change point: . e
Equivalent false positive rafe: 0.0413869 events per year significance (not

Estimated significance for|1-day observation: 5.45909 / accurate for this

Estimated significance for|1-month observation: 4.14238 exam le)
Estimated significance for|1-year observation: 2.88448 P
Estimated significance for|1-decade observation: 1.15556

Source Identifier: FGLJ0534 5PP2201GHOSTPP210 PSRJ0534PP2200GHOSTPP210
Source Association: PSR J0534+2200 GHOST+210

Source RA (J2000): 293.628 deq.

Source Dec (J2000): 22.0191 deg.

Source Redshift: 0 \ inf
Change point time: MJD 56987.98095454146 source 1nto
Change point age at first detection: 94.3657 min.

Change point present age: 94.3657 min.

Bayesian Block prior value: 0.002
Bayesian Block prior log: -6.21461 .
Rayesian Block total fitness: 7.1474 time and age of

detected flare

(@) 4:32 pm (9 days ago)
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}ffﬁ% Example alert email
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detailed contributions to fitness from
analysis bins (will likely be replaced
by energy bins in the future)

= ey

Change point present age: 94.365/ min.
Bayesian Block prior value: 0.002
Bayesian Block prior log: -6.21461
Bayesian Block total fitness: 7.14741

-> bin 0 contribution: 6.758

-> bin 1 contribution: 0

-> bin 2 contribution: 0.389412
Change point position in buffer: 5
Number of change points in buffer: 1

Change point 0 at 5
Binwise ratios before and after change point O:

Bin 0: 0.664836 to 1.03409

Bin 1: 1.78658 to 0.577703

Bin 2: 0 to 0.750151
Binwise estimated (Non,Noff,alpha,sigma) before and after change point O:

Bin 0: (69,1837.57,0.0564796,-3.55096) to (890,15238.4,0.0564796,0.967379)

Bin 1: (6,88.0916,0.0381237,1.2668) to (18,817.283,0.0381237,-2.52143)

Bin 2: (0,19.3189,0.0282398,-1.0373) to (5,236.026,0.0282398,-0.666625)
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On & off counts

Signal to
background ratio
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Example alert email

- Plots attached to alert
email to improve
confidence that alert
1s real

o If (after more data
comes in) a reported
alert increases in
significance, an alert
update is sent
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}ﬁwﬁ Flare monitor for AMON

» Until now, we have been building the flare monitor with follow-up
observations in mind (especially from IACTs and other pointed
instruments that need to prioritize their targets)

- For correlating alerts between different experiments, a much higher
false positive rate can be tolerated

- Straightforward adjustments to the HAWC flare monitor code would
allow sub-threshold alerts to be sent

- False positive rate can be handled on an event-by-event basis

- Especially for these sub-threshold alerts, and even for the primary alerts,
it would be good to have a more reliable method than email (would like to
begin incorporating alerts in AMON framework very soon)

 Suggest 2 streams: basically high and low threshold
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« HAWC flare monitor enables rapid and automatic detection of flares
from a selection of TeV gamma-ray sources and probable candidates

- Although the flare monitor is focused on detecting flares with a very low
false positive rate, increasing the false positive tolerance is easy

 Both above-threshold and sub-threshold alerts from the HAWC flare
monitor fit well into the AMON structure

 Substantial improvements to the sensitivity based on improvements in
the HAWC analysis code are imminent

- HAWC flare monitor will be deployed soon
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