
  

 

Abstract— This paper presents an improved flocking 
algorithm to increase the connectivity of a mobile ad hoc 
network using autonomous and intelligent agents.  Flocking 
algorithms usually aim to simulate realistic movements of a 
group of agents.  In this paper, however, agents use a flocking 
algorithm to find a solution to a computationally very difficult 
optimization problem in real-time as the topology of the network 
changes due to the mobility of users.  In the improved flocking 
algorithm, agents select their interaction partners based on the 
Gabriel Graph and adjust their flocking behavior parameters 
dynamically.  A simulation study is conducted to compare the 
performance of the improved flocking algorithm with a previous 
algorithm.  Computational studies show that the recommended 
strategies are quite effective.         

I. INTRODUCTION 

An ad hoc network is a communication network that is 
established spontaneously by a set of devices that can 
communicate without requiring a fixed communication 
infrastructure.  As wireless communication technologies are 
increasingly integrated into a variety of devices, mobile ad 
hoc networks (MANETs) have found a wide range of viable 
real-life applications such as military missions, emergency 
response, and search/rescue maneuvers [1-5].  

The topology of a MANET is dynamic because its nodes 
move freely.  New nodes may join the network, existing 
nodes may disappear, or wireless communication links vanish 
when nodes move out of the range.  Therefore, maintaining 
an acceptable level of Quality of Service (QoS) in MANETs 
is a challenging task.  The foremost challenge is to ensure 
that a MANET provides connectivity to all of its users at all 
times.  In the literature, several papers propose the use of 
special mobile nodes to augment the topology of a MANET 
dynamically as the nodes move [6-11].  These special nodes, 
called agents, monitor the state of the network and 
dynamically adjust their locations to support the connectivity 
of other nodes (or user nodes).  For this system to work, 
agent nodes should have information regarding the 
whereabouts of the other nodes and make periodic decisions 
regarding where to move.  Furthermore, the information 
exchange and location optimization should be performed in 
real-time and depend on the limited computing capability of 
nodes.   

To guide the deployment decisions of agents, two distinct 
types of methods are proposed in the literature: centralized 
and distributed.  In the centralized methods [12-14], the 
network is assumed to have a central management system that 
is aware of the locations of all nodes and capable of 
communicating with the agents at all times.  The central 
management system optimizes the positions of the agents and 
directs them where to move periodically.  Although it is 

possible to identify the locations of nodes and communicate 
with agents in some MANET applications, the resulting 
mathematical problem is still very to difficult solve.  
Therefore, metaheuristics, such as Particle Swarm 
Optimization, are frequently used as the optimization engine 
in the centralized methods.  

In the distributed methods [8, 9], agents are only aware of 
the nodes that they can directly communicate with.  Agents 
make their deployment decisions independently based on 
interactions with their local neighbors.  They use simple 
flocking rules, including modified versions of the cohesion 
and separation rules defined by Reynolds [15] in the original 
flocking algorithm, to determine their new locations as the 
topology of the network changes.  In the literature, flocking 
algorithms are frequently applied to the cooperative control 
of mobile robots [16-23].  In the context of mobile robots, the 
function of flocking algorithms is to keep the robots together 
and avoid obstacles while performing a task.  However, the 
problem under consideration in this paper is quite different 
because user nodes are assumed to move randomly. 

This paper extends the flocking algorithm of Konak et al. 
[9] in two ways: (i) the interaction partners of an agent is 
selected based on the Gabriel Graph and (ii) each agent 
adjusts the parameters of its own flocking algorithm 
dynamically based on the crowdedness of its neighborhood.  
These modifications aim to address some of the problems 
observed in the previous algorithms [8, 9] such as clustering 
of agents and unnecessary links established by agents. 

II. PROBLEM DESCRIPTION  

Consider a MANET G(t) with a node set N(t) and edge 
set E(t) at time t (i.e., ( ) ( ( ), ( ))G t N t E t= .  There are two 
types of nodes, user nodes (set U(t)) and agent nodes (set 
A(t)).  User nodes are assumed to move randomly; and 
therefore, the topology of the network is dynamic and 
random.  The nodes communicate over wireless links that are 
established if two nodes are within one another’s 
communication range.  Let point ( ) ( ( ), ( ))i i it x t y t=p , 

( )ix t ∈  and ( )iy t ∈ , represent the location of node i at 
time t.  Then, edge set E(t) of the network at time t is defined 
as  

 ( ) {( , ) : , ( ), , min( , )}( )ij i jE t i j i j N t i j td R R= ∈ ≠ ≤  

where Ri is the communication range of node i, and dij(t) is 
the Euclidean distance between nodes i and j (i.e.,   

( ) || ( ) ( ) ||iij jt t td = −p p  where ||p|| denotes the Euclidean 
norm of vector p.   

A Dynamic Flocking Algorithm with a Restrictive Partnership 
Model to Support Mobile Ad Hoc Networks 

Abdullah Konak, Member, IEEE and Sadan Kulturel-Konak  



  

The mission time of the network is divided into T discrete 
time intervals.  The objective of agent nodes is to maximize 
the connectivity of user nodes as the network topology 
changes during the mission time.  Let binary variable τijt=1 if 
there is a path between user nodes i and j at time t, and τijt=0 
otherwise.  The mathematical formulation of the problem is 
expressed as follows: 
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The objective function of the problem represents the 
average percent of connected (directly or indirectly) user 
node pairs throughout the mission time.  The constraint of the 
problem states that each agent i can move a maximum of Vi 
unit distance between two consecutive time periods.   

The mathematical formulation given above is helpful to 
express the problem, but it is difficult to solve optimally.  
Konak et al. [10] present a nonlinear mixed-integer 
programming formulation to determine the optimal locations 
of agent nodes at a period t given their locations at period t-1 
and solve the formulation for each period independently 
throughout the mission time.  However, they report that this 
approach can only be applied to small-sized networks with a 
limited number of agents.  Therefore, a metaheuristic 
approach based on PSO is suggested [7, 10]. Recently, 
Magán-Carrión et al. [24] have developed and tested a PSO 
algorithm with a mobility prediction to locate relay nodes 
dynamically in real-life robot swarms.  Magán-Carrión et al. 
[25] also introduce a multi-stage approach for locating relay 
nodes on a MANET to maximize reachability and the 
network throughput. 

III. PROPOSED FLOCKING ALGORITHM 

In the flocking algorithm defined by Konak et al. [9], the 
movement of an agent node is defined as 
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where ( ) ( ( ), ( ))i i it vx t vy t=v  is the velocity vector of agent i, 
indicating the direction and the distance that agent i intends 
to travel from period t to t+1.  The velocity vector ( )i tv  is 
calculated based on three flocking behaviors, separation, 
cohesion, and exploration which are shaped by the agent’s 
interactions with its neighbors at time t.  In [9], the set of 
interaction partners of agent i includes all nodes that the 
agent has a direct link with (i.e., all topological neighbors of 
agent i, which is denoted as Ni(t)).  Therefore, an agent may 
be heavily influenced by their interaction partners that are 
clustered together.  Such clustered neighbors may lead the 
agent to overreact.  In this paper, we define a new interaction 
partnership model based on the Gabriel Graph.  In this new 
partnership model, agent i interacts with node j if the 
following two conditions hold:  

• dij(t)≤ min(Ri, Rj) 

• There is no other node within the circle where the 
line segment connecting pi(t) and pj(t) is a diameter. 

For agent i, let NGi(t) denote the set of nodes that satisfy 
the above two conditions.  Fig. 1 illustrates an example of 
determining interaction partners of an agent (Node 1) based 
on the Gabriel Graph.  Assuming that all nodes are within the 
range of one another, N1(t) would include all nodes in the 
figure.  However, NG1(t) includes only nodes 2, 3, 7, and 8, 
indicated by the red colored edges in the figure.  Node 6 is 
not considered as an interaction partner of Agent 1 because 
node 3 resides within the circle between agent 1 and node 6.  
Similarly, nodes 4 and 5 are not interaction partners of Agent 
1 due to the location of node 3.   

 
 

Figure 1.  Determination of interaction partners of Node 1 based on the 
Gabriel Graph. 

In the flocking algorithm, agents exhibit different 
behaviors while they interact with their user and agent 
interaction partners.  Therefore, it is necessary to identify the 
user and agent neighbors of agent i.  Let Ui(t) and Ai(t) 
represent the sets of user and agent topological neighbors of 
agent i at time t (i.e., Ni(t)= Ui(t) ∪ Ai(t)).  In [9], the 
interactions of agent i with its neighbors are adjusted by four 
static parameters: separation weight, cohesion weight, user 
target distance, and agent target distance.  It is suggested that 
these parameters are tuned based on the density of the 
network, communication ranges, and mobility of nodes.  For 
example, if the network is dense, it is recommended that the 
separation behavior has a higher weight than the cohesion 
behavior in the movement of an agent.  These flocking 
parameters are identical for all agents and static during the 
entire course of the mission time.    

In the proposed flocking algorithm defined in this paper, 
the cohesion and separation behaviors are self-tuned by two 
dynamic parameters SUi(t) and SAi(t) that represent the target 
distances that agent i seeks to maintain between its user and 
agent interaction partners, respectively.  The velocity of 



  

agent i with respect to its interaction partner node j is 
described as follows: 
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If the distance between agent i and node j is more than the 

target distance, then vij(t) suggests agent i to move closer to 
node j (i.e., the cohesion behavior).  Otherwise, agent i 
exhibits the separation behavior and moves away from node 
j.   The total velocity of agent i due to all of its interaction 
partners are given as  
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where α is a memory parameter (between 0 and 1), and it 
indicates how much of the previous information gained by an 
agent is incorporated into the current velocity decision.  If an 
agent has no interaction partners, then the agent moves with 
its maximum velocity in the direction of angle θ, which is 
selected randomly and uniformly between 0 and 2π .  

Target distance parameters SUi(t) and SAi(t) in (2) are 
updated within their upper and lower bounds based on the 
crowdedness of Ni(t) as follows:  

• If |Ai(t)| ≤ 2 Then SAi(t)=SAi  

• If |Ui(t)| ≤ 2 Then SUi(t)=SUi  

• If |Ai(t)| ≥ 3 Then SAi(t)=min(1.1×SAi(t), Ri)  

• If |Ui(t)| ≥ 5 Then SUi(t)=min(1.1×SUi(t), Ri) 

where SAi and SUi are the lower bound of SAi(t) and SUi(t), 
respectively.  The lower bounds can be set based on the 
communication range, the terrain, and the density of the 
network.  Note that although NGi(t) is used in (3) to compute 
the velocity of agent i, the size of its distance-based 
neighborhood determines how SAi(t) and SUi(t) are updated.  
It is also important to note that NGi(t) and Ni(t) can be very 
different depending on how the neighboors of agent i located 
around the agent. The target distances of an agent are 
increased if it resides in a crowded region where the agent is 
less likely to support the connectivity of the network.  
Thereby, the agent is prompted to move away from crowded 
areas.    

Another advantage of the dynamic update of the target 
distance parameters is that no additional flocking parameters 
are needed to prioritize between the cohesion and separation 
behaviors since agents dynamically update their behaviors 
based on the neighborhood size of the agent.  The procedure 
for agent movements is given as follows: 

 

 

MoveAgent(i, t) { 
 Determine Ni(t), Ai(t), and Ui(t) at pi(t) 
 Identify interaction partners, i.e., NGi(t), in Ni(t) 
 Calculate velocity vi(t) using (3) 
 Calculate new location pi(t+1) using (1) 
 Move agent i to new location pi(t+1) 
} 

IV. COMPUTATIONAL EXPERIMENTS 

The simulation environment defined in [9] is used to test 
the performance of the enhancements to the flocking 
algorithm [9].  The user nodes are randomly moved within a 
circle of the radius of 300-unit distance.  In each time step t, 
user node i∈U(t) changes its direction angle θi(t) randomly 
between 0 and 2π with a probability of ρ.  Then, the user 
node travels a random distance between Vmin and Vmax in the 
direction of angle θi(t).  If the new location of the user node 
is outside the simulation area, a new angle θi(t) is randomly 
generated until the node stays within the simulation area.  
The procedure for simulating user movements is given below.  
 
MoveUser(i, t) { 
 Repeat { 
  If  Rand(0,1)≤ρ  Then θi(t)=Rand(0, 2π)  
         Else θi(t)=θi(t-1) 
  pi(t+1)=pi(t)+Rand(Vmin,Vmax)(Cos(θi(t)), Sin(θi(t))) 
 } Until (pi(t+1) is in the simulation area) 
} 
 

In simulation experiments, the four versions of the 
flocking algorithm were compared as given in Table 1.  
Algorithm F is the original flocking algorithm defined in [9], 
which is used as the benchmark in this paper.  Algorithm FG 
is a version of Algorithm F where interaction partners are 
selected based on the Gabriel Graph.  Both Algorithms FD 
and FDG use the dynamic target distance update procedure 
introduced in this paper, and interaction partners are chosen 
based on the Gabriel Graph in Algorithm FDG.  

TABLE I.  VERSIONS OF THE FLOCKING ALGORITHMS TESTED 

Interaction  
Partners Target Distance Update Algorithm 

Ni(t) Fixed F 
NGi(t) Fixed FG 
Ni(t) Dynamic FD 
NGi(t) Dynamic FDG 

 
In experiments, various size test networks were used with 

20, 30, 40, and 50 user nodes and 2, 4, 6, 8, and 10 agents.  
The parameters of the user mobility simulation were Vmin=5, 
Vmax=10, and ρ=0.1, and Ri=100 for all nodes in all test 
networks.  The flocking parameters of Algorithms FD and 
FDG were α=0.90, Vi=10, SAi=75, and SUi=50.  For 
benchmark algorithm F as well as FG, the cohesion and 
separation weights were set to 1 while the exploration weight 



  

was set to zero (i.e., agents did not have any exploration 
behavior if they are connected to other nodes).  Algorithms F 
and FG used static target distances of SAi=75 and SUi=50 and 
α=0.90 for each agent i.   

The simulation was run for T=1000 with a warm-up 
period of 50 for 100 random replications for each test 
network.  In each random replication, the four algorithms 
were tested against the same movement patterns of user 
nodes. 

Table 2 presents the results of the simulation experiments.  
The average percent of connected user pairs during the 
mission time (i.e., the objective function value (Q) of the 
problem given in Section 2) was calculated for each random 
simulation replication.  In Table 2, the mean results of 100 
replications are provided for only Algorithm F.  In addition, 
the percent difference in the mean values of Algorithm F and 
the others are provided for a quick identification of 
improvements in the objective function.   

TABLE II.  THE RESULTS OF THE SIMULATION STUDY  

(|U|,|A|) Mean Q(F) (FG-F)/(F) (FD-F)/(F) (FGD-F)/(F) 

(20,2) 23.73 2.4% 2.3% 2.0% 

(20,4) 28.89 6.9% 6.5% 7.2% 

(20,6) 34.39 13.4% 10.3% 13.2% 

(20,8) 40.21 19.9% 14.4% 20.5% 

(20,10) 46.33 26.3% 17.4% 27.1% 

Average  13.8% 10.2% 14.0% 

(30,2) 36.35 3.5% 4.7% 4.1% 

(30,4) 42.65 8.9% 10.9% 9.6% 

(30,6) 49.46 14.7% 16.4% 16.6% 

(30,8) 56.14 20.2% 21.1% 23.1% 

(30,10) 62.38 25.5% 25.9% 28.3% 

Average  14.6% 15.8% 16.4% 

(40,2) 55.12 4.0% 6.5% 5.9% 

(40,4) 62.21 8.4% 12.2% 11.5% 

(40,6) 68.85 12.4% 17.1% 16.8% 

(40,8) 74.57 16.5% 21.4% 20.7% 

(40,10) 79.72 19.4% 23.5% 23.8% 

Average  12.1% 16.1% 15.7% 

(50,2) 75.34 2.8% 5.2% 4.7% 

(50,4) 80.76 5.5% 8.9% 8.3% 

(50,6) 85.02 8.0% 11.6% 10.8% 

(50,8) 88.73 10.0% 13.2% 13.1% 

(50,10) 91.17 11.5% 14.4% 13.9% 

Average  7.6% 10.7% 10.2% 

 
The results in Table 2 show that the methods proposed in 

this paper to improve the performance of a flocking 
algorithm for guiding deployment decisions of agents that 

aim to increase the connectivity of a MANET are effective.  
Both the dynamic target distance update procedure and the 
interaction partnership method based on the Gabriel Graph, 
used either individually in algorithms FG and FD or together 
in Algorithm FDG, increased the average connectivity of the 
test networks significantly.   

In all test cases, percent improvement was observed with 
the increasing number of agents.  One of the problems of 
Algorithm F is that multiple agents may be attracted to the 
same clusters of densely connected user nodes and not able to 
break out from them.  Hence, these agents will be less likely 
to contribute to the overall connectivity of the network.  
Selecting interaction partners of agents based on the Gabriel 
Graph encourages agents to collaborate implicitly.  For 
example, if two agents are in close proximity and have many 
mutual topological neighbors, the rules of the Gabriel Graph 
will prevent these agents to share many identical interaction 
partners.  Thereby, the two agents can focus on supporting a 
different set of users.  The dynamic target distance approach 
also prompts agents to move away from densely connected 
segments of the network.   

V. CONCLUSION 
The computational experiments show that the flocking 

algorithm performs better if some of the clustered neighbors 
of agents are ignored in determining their movements.  In this 
paper, the interaction partners of an agent are selected based 
on the Gabriel Graph seems to establish sufficient but not 
excessive interconnections for agents to select their partners.  
Thereby, an agent movement is not heavily influenced by a 
group of its topological neighbors that are clustered tightly.  
In addition, some flocking parameters such as the number of 
interaction partners and determining which partners to select 
are not required.  Therefore, the proposed flocking algorithm 
has a limited number of parameters to tune.  

The computational experiments support that the flocking 
algorithm with dynamic target distances increases the 
connectivity of networks significantly. The proposed self-
tuning ability of agent behaviors not only requires fewer 
parameters but also prevents agents to be attracted to densely 
connected user clusters.  The proposed flocking algorithm is 
quite straightforward and can be implemented in a 
decentralized and asynchronous manner.     

Future research may include designing and testing more 
comprehensive agent behaviors and alternative ways of 
identifying interaction partners.    
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