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1 Introduction 

Accurately modelling and estimating radio signal 
propagation in a wireless local area network (WLAN)  
is a challenging, but very important task for determining 
optimal placement of access point (AP) locations  
and frequency/power assignments. WLAN performance 
indicators such as data rate, packet loss, and jitter at a 
particular point in the target area of a WLAN depend on the 
received wireless signal strength at the point. A WLAN is 
expected to provide 100% coverage with signal strength 
above a minimum threshold value over all its target area. To 
ensure an acceptable level quality of service for users of a 
WLAN, network designers rely on site survey techniques 
and/or signal propagation models. 

Site surveying for a new WLAN deployment usually 
starts with placing APs at several preliminary locations and 
collecting signal strength and other service quality data at a 
set of test points. This survey data is used to modify AP 
locations to ensure an adequate level of coverage for users 
in the target area of service. The number and distribution of 
such test points depend upon the size of the service area as 
well as its physical topology and anticipated number of 
users. Proper selection of preliminary AP locations is also 

important for an effective site survey and design  
(Hills 2001). There are also difficulties associated with data 
collection. Some parts of the target area might be 
inaccessible during the active survey. Changes in 
environment may affect quality of measurements and cause 
variations (Zvanovec et al., 2003). Site survey personnel 
must be experienced in carrying out complex site surveys 
and correctly interpreting the results. Therefore, site 
surveying is a very time consuming and labour intensive 
process. Several tools have been developed to aid site 
surveys and automate the design process based on  
pre-existing site surveys. For example, Rollabout (Hills and 
Schlegel, 2004) is a rolling cart with a laptop computer that 
automatically collects data and creates the coverage map of 
a WLAN. Commercial site survey software systems, such as 
Ekahau (Badman 2006), provide an array of effective tools 
to survey and plan WLANs. 

If APs are not available to gather test point data, 
modelling tools are utilized for predicting network coverage 
over a target area. In this approach, the network coverage  
is simulated using electromagnetic wave propagation  
models. Comprehensive surveys on electromagnetic wave 
propagation models for wireless networks are given in 
(Sarkar et al., 2003; Zvanovec et al., 2003). Simulation 
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provides a cost-effective way to analyse alternative design 
configurations. In addition, simulation can be used to 
determine preliminary locations of APs before a site survey. 
However, the accuracy of a coverage prediction depends 
upon the propagation model and a detailed and accurate 
representation of the target area. Most modern simulation 
software systems are capable of reading maps or blueprints 
and enable users to define objects on the map of a target 
area. 

In this paper, an ordinary kriging-based empirical 
approach is proposed to estimate the signal strength in 
WLANs. The main objective is to create an accurate and 
complete network coverage map of a WLAN from a limited 
number of test point measurements. Therefore, the cost of 
time consuming site surveys can be reduced. In addition, the 
proposed approach can be used to estimate the network 
coverage where samples could not be taken due to 
inaccessibility. Finally, the proposed approach can also be 
used to validate the accuracy of measurements during a site 
survey. 

There has been limited work in the literature to estimate 
the network coverage in wireless networks using empirical 
approaches. Nasereddin et al. (2005) has developed a radial 
basis function artificial neural network (ANN) to estimate 
the signal-to-noise ratio, which is an important indicator for 
quality of service in cellular wireless networks. To predict 
the signal-to-noise ratio at a point p, this ANN approach 
utilizes four inputs: the x-y coordinates (indices) of point p, 
the index of the transmitter with highest transmitted power 
at point p, and the transmission power. First the ANN is 
trained for known points, and then the trained ANN is used 
to predict the signal-to-noise ratio for unknown points on 
the target area. Neskovic et al. (2000) propose a 
backpropagation ANN to predict the wave propagation for 
indoor environments. In this case, the input of the ANN 
includes the distance from the transmitter to the point, 
objects along the straight line drawn from the transmitter to 
the point, and topological information about the target area. 
Therefore, this ANN approach aims to replace physical 
electromagnetic wave propagation models rather than to 
predict network coverage from empirical data. 

Chen and Kobayashi (2002) propose a linear regression 
approach to determine the parameters of wave propagation 
models for WLANs based on the measured signal strengths 
at test points. The fitted regression model is used to the 
estimate signal strengths for unknown points. Chen and 
Kobayashi (2002) report that the estimation error depends 
on the underlying wave propagation model. On the other 
hand, the kriging approach introduced in this paper does not 
assume an underlying wave propagation model, and 
estimations are based only on field measurements.  
Konak (2009) reports an ordinary kriging approach to 
estimate the signal-to-noise ratio in cellular wireless 
networks, particularly in cases with limited number of 
sample points available. 

Because WLANs are mainly used in indoors, the 
attenuation in signal strength due to obstacles, such as walls, 
building structures and large furniture, is significant. 

Therefore, obstacles in the environment must be 
incorporated into estimation. However, this is not possible 
in the kriging approach proposed by Konak (2009). This 
paper extends the ordinary kriging approach in Konak 
(2009) by considering path loss due to obstacles and other 
factors in indoor environments. To take obstacles into 
account, Konak (2010) proposes a distance measure based 
on path loss between points. In this paper, the performance 
of the ordinary kriging based in this new distance measure is 
compared with the neural network approach of Nasereddin 
et al. (2005) and a new feed-forward ANN approach 
proposed. 

The paper is organized as follows. In Section 2,  
general path loss models are briefly introduced. Section 3 
outlines ordinary kriging. Section 4 presents the formulated 
estimation problem and the proposed approach. In  
Section 5, a new feed-forward ANN approach is proposed to 
the formulated problem. In Section 6, computational results 
are presented on a simulated WLAN. 

2 Site survey and path loss models 

Path loss (L) is a measure of the reduction in power density 
of electromagnetic waves as they propagate through space. 
Path loss occurs because of many reasons, such as  
free-space-loss, absorption, and diffraction, etc. In wireless 
communication, path loss is usually expressed in decibels 
(dB) as follows: 

1010 log t
dB

r

P
L

P
=  (1) 

where Pt and Pr are the transmitted and received signal 
power, respectively. In a WLAN, a minimum level of Pr 
should be ensured at each point over the service area of the 
network to meet quality-of-service requirements. Therefore, 
accurately measuring or predicting LdB is an important 
concern in WLAN design. 

In addition to site survey, path loss can be predicted 
using several empirical path loss models. Empirical models 
to predict path loss rely on average path loss values 
measured for typical types of radio frequencies in various 
environments. For example, the Okumura model (Okumura 
and Ohmori 1967; Okumura et al., 1968) and the Hata 
(1980) model were developed based on empirical data 
measured in several urban areas in Japan to predict path loss 
of terrestrial microwave signals in urban environments. 
Interested readers might refer to a comprehensive literature 
survey on empirical path loss models by Sarkar et al. 
(2003). The most general empirical model for path loss is 
given as follows (Andersen et al., 1995): 

1 0 10( ) 10 log ( )L d L c d= +  (2) 

where L0 is called reference point loss and represents the 
path loss value at one metre (m) distance away from the 
transmitter, c is the path loss exponent depending on the 
environment, and d is the Euclidian distance (in m) from the 
transmitter. Parameters L0 and c have been determined  
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for various environments through empirical studies [see 
Zvanovec et al. (2003) for possible values of L0 and c in 
various environments]. 

Predicting path loss for indoors is more challenging than 
for outdoors because the variability in the environment is 
much greater in short distances, and rooms, hallways, 
furniture as well as various construction materials create 
complex multipath relationships. When electromagnetic 
signals pass through walls or floors, they attenuate at 
significant levels. The path loss due to walls can be taken 
into account by considering each wall between a receiver 
point and a transmitter as follows (Cheung et al., 1998): 

2 1( ) ( ) r
r W

L d L d L
∈

= +∑  (3) 

where W is the set of the walls between the receiver and 
transmitter, Lr is the path loss factor (dB) related with wall 
r. For example, the path loss due to a typical dry wall is 
about 5.4 dB. Path loss values of different wall and material 
types are reported by Anderson et al. (2002) and Anderson 
and Rappaport (2004). The empirical model given in 
equation (3) is simple to implement and widely used in 
many real-world cases. 

3 Ordinary kriging 

Kriging was developed by Krige (1951) and Matheron 
(1963) to accurately predict ore reserves from the samples 
taken over a mining field. Kriging is an interpolation 
technique based on the methods of geostatistics. Being 
concerned with spatial data, geostatistics assumes that there 
is an implied connection between the measured data value at 
a point in a space and where the point is located (i.e., each 
data value is associated with a location in the space). 
Assume that each point i in space is associated with a value 
zi of interest. Let u represent a point where value zu is 
unknown (i.e., no sample is available at point u) and let  
V(u) = {1, …, Nu} be the set of points in the neighbourhood 
of point u such that value zi is known for each point  
i ∈ V(u). In ordinary kriging, the most commonly used type 
of kriging, unknown value zu at a point u is estimated as a 
weighted-linear combination of the known values in V(u) as 
follows (Issaks and Srivastava 1989): 

( )
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Kriging is used to determine the optimal weights, which 
produce the minimum estimation error, in equation (4). 
These weights are calculated as follows: 
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where γ(hi,j) is a semivariogram which is a function of 
distance hi,j between points i and j, and λ is the Lagrange 
multiplier to minimize the kriging error. A semivariogram 
represents the spatial covariance between points in space. 
According to geostatistics, as distance hi,j between two 
points i and j increases, the correlation between those points 
is expected to decrease (i.e., Cov(zi, zj) ≤ Cov(zi, zk) if  
hi,j ≤ hi,k). This assumption holds in many real-world cases. 
For example, water pollutant levels in samples taken in 
close proximity are expected to be more correlated than in 
samples taken distance apart. 

Ordinary kriging assumes that the mean is constant in 
the local neighbourhood of a point. Therefore, the expected 
value of estimation error at an unknown point u is zero 

( )ˆi.e., 0 .u uE z z⎡ ⎤− =⎣ ⎦  The weights determined by  

equation (5) are called optimal since they minimize the 
variance of estimation error ( )ˆi.e., .u uVar z z⎡ ⎤−⎣ ⎦  

Prior to determining the weights using equation (5), a 
meaningful distance measure and semivariogram function 
should be selected. In ordinary kriging, a successful 
estimation depends on the choice of the semivariogram 
function. Although there are an infinite number of possible 
semivariogram functions, most commonly used 
semivariogram models, such as linear, exponential, and 
spherical models, provide good results for most datasets. 
For example, the exponential semivariogram model is given 
as follows (Bailey and Gatrell 1996): 
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where C0 is the nugget effect, C1 is the still parameter, and R 
is the range parameter. R defines the distance beyond which 
the correlation between two points is assumed to be 
essentially zero. The nugget effect represents variability at 
distances smaller than the typical sample spacing in the 
dataset. Still parameter C1 is the maximum value of the 
semivariogram function. Selecting a good semivariogram 
function requires a careful study of the dataset and 
subjective judgment. General guidelines for a good 
semivariogram selection are given in Bailey and Gatrell 
(1996). 

Kriging has certain advantages over other interpolation 
techniques. Kriging is an optimal interpolation method 
because it produces an unbiased estimate with minimum 
variance. An important concern in interpolation is to choose 
the best set of available sample points to be interpolated to 
estimate an unknown point. The strength of kriging lies in 
the fact that it defines an optimal set of known points to 
interpolate by adjusting the weights of the known points. 
Notice that not only the distances between known and 
unknown points, but also the distances between known 
points are considered in equation (5). As a result, clustered 
sample points containing redundant information are given 
less weight in estimation. Another advantage of kriging is 
that every estimate has a corresponding kriging standard 
deviation. Thus, a reliability map of predictions can be 



 Predicting coverage in wireless local area networks with obstacles using kriging and neural networks 227 

produced. Once the weights and λ are calculated using 
equation (5), the variance of an individual estimation ˆuz  
can be calculated as follows: 

( )2
ˆ ,

( )
uz i i u

i V u

w hσ γ λ
∈

= +∑  (7) 

4 Path loss estimation using ordinary kriging 

The aim of the proposed kriging approach in this paper is to 
create an accurate and complete network path loss map of a 
WLAN from a limited number of test point measurements. 
Let P denote a set of surveyed test points during a site 
survey, and let Q denote a set of points of interest, where no 
survey data is available. For each point i ∈ P, let zi and  
(xi, yi) denote the measured path loss and the xy-coordinates 
of the test point, respectively. The problem is to estimate the 
path loss at a point u where a measurement was not taken. 
To estimate the path loss at each point u ∈ Q, a procedure 
based on ordinary kriging is proposed as follows: 

1 Define a neighbourhood of point u in the xy plane and 
identify the surveyed points in this neighbourhood. In 
this paper, N-nearest surveyed points are used as the 
neighbourhood of point u. Let V(u) be the set of N 
surveyed points which are closer to point u than other 
points in set P. 

2 Define a distance measure and calculate the distances 
and semivariogram values among the points in V(u) 
including point u. 

3 Calculate the optimal weights using equation (5). 

4 Estimate zu using (4) and calculate the variance of the 
estimation using equation (7). 

In Step 1, set V(u) can be determined in various ways. The 
Euclidian distance is commonly used as the distance 
measure in ordinary kriging, and it can also be used in  
Step 2. In indoor WLANs, however, the covariance between 
two points may not solely depend on the distance between 
the points but also on the obstacles between them. For 
example, two points close to one another may have very 
different path loss values if there is thick concrete wall 
between them. To take the effect of walls and other 
obstacles on the spatial covariance between two points into 
account, a distance measure is proposed based on  
equation (3). Note that the empirical model in equation (3) 
is intended to predict the path loss between a transmitter and 
a receiver, and its unit is dB. In this paper, the distance 
between two points i and j is defined as follows: 

( ) ( )2 2
, 10E

i j i j i jh x x y y= − + − +  (8) 

where 
,
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obstacles between points i and j. The first part of  
equation (8) is the Euclidean distance between points i and 
j. The second part expresses the path loss due to the 

obstacles in terms of the Euclidian distance. For example, 
assume that the path loss factor of a wall between two 
points is 5 dB and the free space parameter c is 2 dB for the 
environment in which the wall resides. The path loss 
between these two points due to this wall is equal to the free 
space path loss of 1.778 m [i.e., 10(5/(10×2))]. Therefore, 
equation (8) will increase the distance between these two 
points by 1.778 m. 

In this paper, the exponential semivariogram model 
given in equation (6) are used with parameters C0 = 1,  
C1 = 10, and R = 100. Because the power level of 
electromagnetic waves significantly attenuates at first 
several metres, the exponential semivariogram model is a 
good fit. By setting R = 100, it is assumed that the spatial 
correlation between two points that are 100 m apart is zero. 
Although the range of an AP depends on many factors,  
100 m is usually assumed as the maximum range of a 
typical AP. By setting C0 = 1 and C1 = 10, it is assumed that 
the maximum semivariogram value is 10 times more than its 
minimum value. Because log10 is used in equation (2), the 
slope of path loss function is smoother compared to the 
corresponding change in the distance. Therefore, a small 
range is preferred for the semivariogram function. Note that 
in this paper, simulated data is used to test proposed 
approach, which justifies the selected parameter values  
of the exponential semivariogram model based on the 
knowledge of the underlying system. In real-world data, 
however, the parameters of a semivariogram model should 
be fitted based on empirical data. 

5 Path loss estimation using a backpropagation 
neural network 

As discussed in Konak (2009), the radial basis function 
ANN approach of Nasereddin et al. (2005) can estimate the 
wireless network coverage accurately if the target area does 
not include obstacles. However, the computational results in 
Section 6 have shown that this ANN approach performs 
poorly for the path loss estimation problem with obstacles. 
Therefore, a new feed-forward backpropagation neural 
network is proposed to gauge the performance of the kriging 
approach. Backpropagation ANNs are excellent at fitting 
functions. In this paper, a fully connected feed-forward 
ANN with two hidden layers are used. This type of ANN is 
known to be a universal approximator (Funahashi, 1989; 
Hornik et al., 1989), which is capable of modelling any 
relationship regardless of form or complexity. In fact, the 
problem defined in Section 4 is a function fitting problem 
where the main assumption is that there is an inherent 
relationship between the path loss value at point u ∈ Q and 
the path loss values of the points in set V(u). 

Similar to the kriging approach, the objective is to 
estimate path loss at point u ∈ Q using the sampled points in 
set P. Therefore, the training set for the ANN consists of all 
points in set P. For each point i ∈ P, the input vector to the 
ANN includes xy-coordinates (xi, yi) and pair (zj, hi,j) for 
each point j ∈ V(i), and the output of the ANN is zi. Note 
that hi,j is the distance measure given in equation (8), and 
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V(i) is the set of N-nearest points as described in Section 4. 
All input and output vectors are normalized between ±1. 

6 Computational experiments 

In this section, the performance of the proposed kriging 
approach is first compared to the radial basis function ANN 
approach of Nasereddin et al. (2005) and then to the 
backpropagation ANN approach described in Section 5 in a 
rigorous experimental study. These two ANN approaches 
are called RANN and BANN, respectively, to distinguish 
them in this section. In the experiments, a WLAN with three 
APs was simulated over an area of 100×100 m2 including 
different types of walls as shown in Figure 1. To generate a 
dataset, the area was divided into 50×50 grids and path loss 
values were sampled at all intersection points of the grids  
(a total of 2,601 data points). Then, the data points were 
randomly divided into two sets as training set P (i.e., the set 
of points where the path loss value is assumed to be 
surveyed) and test set Q (i.e., the set of points where the 
path loss value is not known). Let ρ be the probability of 
selecting a data point as a training point in set P in the 
process of randomly partitioning data points into sets P and 
Q. For example, a set of random training points sampled 
with ρ = .05 are marked by ( ) on the target area given in 
Figure 1. The goal is to estimate the path loss values for test 
points in set Q using training points in set P. 

Figure 1 Simulated WLAN coverage over 100 × 100 m2 area 

 
Notes: The area was divided into 50 × 50 grids. The path 

loss values at the corners of the grids were 
calculated using the empirical model given in (3) 
with parameters: L0 = 40.2, c = 4.2, and Lr ranges 
from 3 to 15. Walls are shown by back lines, and 
the thickness of a wall indicates its path loss 
factor. Training points that are randomly selected 
with ρ = .05 are marked by ( ). 

First, the RANN approach of Nasereddin et al. (2005) and 
the kriging approach were compared for different levels of ρ 
ranging from 0.02 to 0.1. For each level of ρ, 20 random 
sets of training and test points were generated, and the path 
loss values at test points were estimated by both RANN  
and the kriging approaches. In the kriging approach, five 
nearest training points were used. In the RANN approach,  
20 different neural network models were trained for each 
case by setting the spread parameter of the radial basis layer 
from 0 to 2.0 by 0.1 intervals, and the model with the 
smallest estimation error was used in the comparison. 

The mean absolute percent errors of the kriging and the 
RANN approaches are compared in Figure 2. In this figure 
each box plot includes 20 data points (i.e., random training 
and testing sets), and the same training and testing sets were 
used in the kriging and neural network approaches for each 
case. As shown in Figure 2, the kriging approach 
outperformed the RANN approach of Nasereddin et al. 
(2005) significantly. In the comparisons given by Konak 
(2009), the performance of this RANN is at par with the 
kriging approach. However, the test problem in this paper 
includes obstacles, making the coverage surface much more 
complex than the test problems used in Konak (2009). 
Therefore, the RANN performed poorly particularly for the 
cases with limited number of training samples. 

Figure 2 The box plot of mean absolute percent error achieved 
by the RANN approach (N) and the ordinary kriging 
approached (O) on 20 random sets of P and Q for 
various levels of ρ 

 

The BANN and the kriging approaches were also compared 
for different levels of ρ ranging from 0.02 to 0.1 using five 
nearest training points as shown in Figure 3. After initial 
experiments, a network topology with two hidden layers 
was selected for the BANN in this paper. The network had 
15 neurons in the first hidden layer and ten in the second 
layer (i.e., the topology of the network was 12-15-10-1). 
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The network was trained by the resilient backpropagation 
algorithm of the MATLAB Neural Network Toolbox for a 
maximum of 200 epochs. The default settings were used for 
the training schedule and the neuron activation functions in 
all layers. All points in set P were used to train the network 
(i.e., unlike the default setting in the MATLAB Neural 
network toolbox, the training set was not partitioned into 
training, validation, and test sets), and the path losses of 
points in set Q were estimated using the trained network. As 
seen in Figure 3, the performance of the BANN approach 
was closer to the kriging approach, but the kriging still 
provided much more accurate estimations than the BANN 
approach in this paper. The results in Figures 2 and 3 clearly 
demonstrate that the kriging approach can outperform 
neural networks, even universal approximator neural 
networks such as the BANN proposed in this paper, in 
estimating wireless network coverage. 

Figure 3 The box plot of mean absolute percent error achieved 
by the BANN approach (N) and the ordinary kriging 
approached (O) on 20 random sets of P and Q for 
various levels of ρ 

 

7 Conclusions 

This paper introduces ordinary kriging as a new tool to 
predict network coverage in WLANs based on available 
samples taken in an active site survey. The proposed 
approach can also be used to validate samples taken during 
a site survey. In addition, a distance measure is proposed to 
count the effect of obstacles on the spatial covariance 
among points. This distance measure has been shown to be 
effective. The proposed approach can be easily embedded 
within a site survey computer programme to interpolate 
signal coverage for points which are not surveyed in the 
target area. As further research, it will be interesting to 

integrate the proposed kriging approach into other 
approaches such as ANNs. 
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