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Abstract In this paper, an unequal area Cyclic Facility Layout Problem (CFLP) is studied.
Dynamic and seasonal nature of the product demands results in the necessity for con-
sidering the CFLP where product demands as well as the departmental area require-
ments are changing from one period to the next one. Since the CFLP is NP-hard,
we propose a Simulated Annealing (SA) metaheuristic with a dynamic temperature
schedule to solve the CFLP. In the SA algorithm, both relative department locations
and dimensions of departments are simultaneously determined. We benchmark the
performance of the proposed SA algorithm with earlier approaches on different test
problems from the literature and find out that the SA algorithm is promising.

Keywords Cyclic Facility Layout Problem, Simulated Annealing

1. Introduction

In this paper, we introduce a Simulated Annealing (SA) Algorithm to solve the Cyclic Facil-
ity Layout Problem (CFLP), which arises in manufacturing systems where product types
and demands are seasonal. Generally, the facility layout problem (FLP) involves with deter-
mining the locations and shapes of a set of rectangular departments within a facility in
order to optimize a performance measure. Because non-value-added material handling activ-
ities account for 30-40 percent of the total operational expenses in a typical manufacturing
system [24], minimizing the material handling cost has been the primary objective of the
FLP. In order to reduce the material handling cost, the departments that have high levels of
inter-departmental material flows between them should be located as close to one another
as possible. The CFLP can be considered as a special case of the Dynamic Facility Layout
Problem (DFLP) which is concerned with planning the layout of a facility over multiple time
periods. The DFLP is applicable in cases where material flows among departments change
over time because of new products, product demand changes, and product life cycles, etc.
In such cases, a layout with a low material handling cost in a time period may lead to high
material handling costs in the following periods. Significant changes in inter-departmental
material flows may require adding new departments, removing, repurposing, or rearrange-
ment of the existing departments in order to reduce the material handling cost. In addition,
department area requirements may change depending on the product portfolio and demand
changes. However, rearranging departments within the facility is also a costly operation. In
addition to the material handling cost, the cost of rearranging departments is also considered
in the DFLP.

Since its introduction by Rosenblatt [22], many variants of the DFLP and solu-
tion approaches have been proposed in the literature as summarized in [I] and [7]. In
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the literature, the DFLP is most frequently studied with equal area departments (e.g.,
[26, 25| 277, (3] 2], 18] 16l 14]). In these approaches, the DFLP is formulated as a quadratic
assignment problem. Only a limited number of papers focus on the DFLP with unequal area
departments [5] [0, [13], 12, 17, 20} 29]. In the mathematical formulations of the DFLP with
unequal area departments, it is generally assumed that department dimensions are predeter-
mined problem parameters. Although the assumption of fixed department dimensions leads
to linear mathematical models and makes the DFLP with unequal area departments compu-
tationally more tractable, the problem is still very difficult to solve using exact approaches.
Therefore, heuristic approaches are frequently used to solve the problem in the literature.

As stated earlier, the CFLP is a version of the DFLP such that the planning horizon is
partitioned into T' time periods (¢t =1, ...,T), and after time period T', the inter-departmental
flows return back to its initial state in the first time period. In other words, the product
portfolio and demands significantly change from one time period to another within the plan-
ning horizon, but they remain relatively stable in each time period over multiple planning
horizons. However, this cyclic nature of the inter-departmental flows is not the main motiva-
tion for the mathematical formulation and the solution approach introduced in this paper.
As a result of the cyclic nature of the product portfolio and demands, departments may also
have significantly different area requirements in each time period. Additionally, due to the
limited size of the facility, it is impossible to fit all departments with their maximum area
requirements into the facility at the same time. Therefore, some of the departments should
be relocated or their sizes must be adjusted to ensure that all minimum department area
requirements are satisfied as demonstrated in Figure . In other words, the dynamic area
requirements of departments is another justification for rearranging the departments in the
CFLP in addition to the the dynamic nature of inter-departmental flows. In the literature,
on the other hand, the existing formulations of the DFLP with unequal area departments
assume that the department dimensions are predetermined. Furthermore, the size of the
facility is assumed to be much larger than the total area requirement of departments in
many test instances of the DFLP with unequal area departments. This implicit assumption
is widely accepted in the literature mainly because of the difficulty of finding a feasible
arrangement of departments with predetermined dimensions within a facility. On the other
hand, this implicit assumption is not valid in real-life scenarios where a facility with limited
space is repurposed for a different set of products in each production cycle. If the facility
has limited empty space, then the departments with predetermined dimensions cannot be
freely arranged within the facility, and thus the department shapes and dimensions become
important decision variables that determine the performance of the layout. Because of these
reasons, the previous DFLP formulations and solution approaches are not well suited to
the CFLP. Therefore, we have recently introduced a new formulation for the CFLP where
department dimensions are considered as decision variables in addition to their locations [11].

In this paper, we develop a SA algorithm with a dynamic temperature schedule based on
a recent formulation of the CFLP [II] to solve large-sized problems. Note that Lacksonen
[13, 2] also proposed a two stage approach to the DFLP with unequal department areas
such that relative department locations are determined in the first stage, and after fixing the
locations of the departments, their exact dimensions are determined in the second stage using
an area approximation technique. In the SA algorithm presented in this paper, department
dimensions and locations are simultaneously determined.

2. Problem Description and Mathematical Formulation

In this section, we present the mathematical formulation of the CFLP where department
dimensions are considered as decision variables unlike the previous formulations to the
DFLP. For the brevity of the presentation, we use superscript s = {z,y} to represent the
x and y-axis directions. The CFLP is defined as follows. A set of products with seasonal
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FIGURE 1. A CFLP with four departments and three time periods.

demands are manufactured within a facility with n rectangular-shaped departments. The
planning horizon includes T production time periods such that the product portfolio and
demands vary significantly from one period to another. Therefore, the area requirements of
the departments as well as the inter-departmental material flows depend on the time period.
In addition, the product portfolio and demand have a cyclic pattern, i.e., the same sequence
of the production periods repeat in each planning horizon.

The input parameters of the problem are as follows:

L? side length of the facility along the s-axis direction
a;; minimum area requirement of department ¢ in time period ¢
b5, minimum side length of department ¢ in time period ¢ along the s-axis direction
ub;, maximum side length of department ¢ in time period ¢ along the s-axis direction
R;; variable rearrangement cost per unit distance relocation of department i from
time period t to t 41
Qi+ fixed rearrangement cost of department ¢ from time period ¢ to ¢ + 1
fij+ quantity of the material flow between departments ¢ and j in time period ¢
m;;¢ material handling cost per unit distance between departments ¢ and j in time
period t

The decision variables of the problem are summarized as follows:
c;, s-axis coordinate of the centroid of department ¢ in time period ¢
l7, side length of department ¢ along the s-axis direction in time period ¢
binary decision variable denoting the relative location of department ¢ with
respect to department j in time period ¢ such that z;;, =1 if department ¢ is

enforced to precede department j in the s-axis direction, z;;, =0 otherwise.

S
Zijt

The total material handling cost (M HC) is calculated as follows:

T n n
MHCZZZ Z mijtfijt(d%t+d?jt)

t=1i=1 j=i+1
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where d%, and d?., denote the distances between the centroids of departments i and j

ijt 15t
along the z- and y- axis directions in time period ¢, respectively. For department pair 4
and j, (df;; +d}};) is the rectilinear distance between their centroid coordinates, (cf;,c};)
and (cf,cj;), in time period ¢.

In the mathematical formulation of the CFLP presented in this paper, the actual size of
department 4 is allowed to be larger than the minimum area requirement of the department,
Le., I% x1¥ > a;. On the other hand, the area of the facility may be smaller than the sum of
the maximum area requirement of the departments, i.e., L* x LY < 2?21 maxy=1, . 7(a;).
Therefore, it is important to determine the dimensions of the departments in a way that
any unnecessary department rearrangements are avoided. This strategy is only possible by
considering 1%, and [}, as decision variables.

In the CFLP, the rearrangement cost of a department is quantified by measuring how
much its northeast and southwest corners are moved from time period ¢ to ¢+ 1. Let u;,
and v}, denote how much the northeast and southwest corners of department ¢ are moved
in the s-axis direction from time period ¢ to ¢t + 1. Then, the total rearrangement cost (RC)
is calculated as:

T n T n
RC=0.5 Z Z Rt (uf, + ul, + vl +vd) + Z Z Qitrit
t=1 i=1 t=1i=1

where r;; is a binary variable such that r;; =1 if department i is relocated from time period
t tot+1, and r;; = 0 otherwise. Note that the variables and cost parameters for time period
T represent the changes from time period 7" to 1. In the DFLP literature, the rearrange-
ment cost is usually calculated based on how much department centroids are moved between
consecutive time periods. However, this approach is not appropriate for the CFLP because
department sizes are implicitly considered as decision variables. It is possible that the size of
a department changes between two consecutive periods, but its centroid remains the same.
In fact, maintaining the same size, shape, and location for departments with high rearrange-
ment costs throughout the planning horizon can be an economical strategy. In this strategy,
departments with high rearrangement costs may have larger areas than their minimum area
requirements in some time periods in order to minimize their rearrangement costs. If the
facility has limited area, deciding the optimal sizes of departments and which departments
will maintain their sizes over multiple time periods sets the CFLP apart from the other
variations of the DFLP. However, this strategy could not be implemented using department
centroids to quantify the rearrangement cost. Therefore, we calculate the rearrangement
cost based on the movement of the diagonal corners of departments. The mathematical
formulation of the CFLP is given in Problem CFLP as follows:

Problem CFLP:

Minimize TC =MHC + RC

Subject to:

2t 2+ 2+ 2 =1 Vi< j,t (1)
iy —0.503;, > ¢, + 0.5, —M(l—zfjt) Vi#£j,t, s (2)

¢ +0.505 < L° Vi, t,s (3)

i —0.505, >0 Vi, t, s (4)

dije > ¢y — 5y Vi<j,t, s (5)

dijg > cip— iy Vi< j,t,s (6)

gy > (Cf(t+1) + 0.5lf(t+1)) — (3, +0.513,) Vi, t<T,s (7)

ugy > (¢ +0.505) — (1) + 0.5, 41)) Vi, t<T,s (8)



Kulturel-Konak and Konak: Cyclic Facility Layout Problem

204 1CS-2015—Richmond, pp. 200-211, © 2015 INFORMS
uir > (cir +0.505) — (c5y +0.50%) Vi, s (9)

uip > (¢ +0.505) — (¢ip + 0.5057) Vi, s (10)

vy > (Cf(t+1) — O.SZf(H_l)) — (5, —0.513,) Vi, t <T,s (11)

vy, > (cf, — 0.515,) — (cf(H_l) — 0.51f(t+1)) Vi, t <T,s (12)

vip = (¢ip — 0.5037) — (cfy — 0.507) Vi, s (13)

vir = (¢iy — 0.505)) — (¢ip — 0.5077) Vi, s (14)

12, <ubj, Vi, t,s (15)

o > 163, Vi, t, s (16)
rie(L® + LY) > uf, + ul, + vf, + v}, Vi, t (17)
aie > 51, Vi, t,s (18)

s s
dijta City Wi, Vst Z 0
s
Tty 2y €40, 1}

Constraint ensures that each department pair ¢ and j are enforced to precede one
another along either the z-axis or y-axis direction in each time period t. Constraint
ensures that departments ¢ and j will not overlap along the s-axis direction if 27;; =1 in time
period t. Note that if 27, =0, departments ¢ and j may or may not overlap along the s-axis
direction. Constraints and make sure that the departments are located only within
the boundaries of the facility. Constraint and @ are used to calculate the rectilinear
distance between the centroids of departments i and j in time period ¢. Constraints @—
are used to calculate the rearrangement of the northeast corner of each department from
time period t to t + 1. In the similar fashion, Constraints — are used to calculate
the rearrangement of the southwest conner of each department. At the end of period T as
stated in Constraints @, , , and , the departments are expected to be located
at their starting locations in time period 1. Constraints and control the shapes
and dimensions of the departments in order to prevent impractical department shapes.

Constraint is the minimum area requirement of department ¢ in time period ¢. Instead
of this non-linear constraint, polyhedral outer approximation constraints suggested by Sher-
ali et al. [23] are used as follows:

aitlfy, + 437 ,1% > day T Vi,p,t (19)
where Z;,; is called a tangential support point and calculated as follows:

Tt = Ubfy + 5o (ubfy = 1b) p=0,... A1

where parameter A is the number of tangential support points to enforce the minimum
area requirement of the departments. Parameter A determines accuracy of the area approx-
imation. In the FLP with a single time period, the inequality in provides a linear
approximation to the non-linear relationship between the department area and side lengths,
Le., a; =1F x 1Y, without using any binary variables because department areas are forced to
be as small as possible to minimize the distances between their centroids [23].

It should be noted that constraint can be dropped from the formulation, or ubg,
should be modified to ensure that departments can be larger than their minimum area
requirements. This is particularly important when department area requirements change
significantly during the planning horizon.

3. Simulated Annealing Algorithm

The CFLP defined above is a very challenging problem to solve using exact approaches.
Developing a heuristic algorithm to solve the CFLP is also challenging because of the vari-
ety of the decision variables and constraints involved in the problem. In particular, binary
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decision variables 27}, should be encoded in a consistent manner to avoid infeasible layouts
[10, 19]. For example, the assignment of 2 =1, 2, =1, zi;, = 1 1s illogical because this
assignment states that department i precedes department k in the z-axis due to the rela-
tionship 2, =1 and 27}, =1, but then department k precedes department ¢ due to zj;, =1.
In addition, the CFLP has several different types of constraints which are challenging to
handle in a heuristic algorithm [9].

3.1. Move Definition

The SA algorithm is based on the observation that a solution to the problem can be repre-
sented by binary decision variables z7;, and the value of all other decision variables can be
determined by solving a linear MIP model. It should be noted that binary decision variable
r4¢ is an auxiliary variable to calculate the fixed rearrangement cost. Therefore, the optimal
value of variable r;; can be effectively determined for a given settings of binary decision
variables z7};. Let 27, (u) denote the value of binary decision variable 27}, for a solution u to
Problem CFLP, and T'C'() be its objective function value. In the SA algorithm a neighbor
pire of solution p is obtained by fixing 2{;, < 27, (1) Vi # j,i #4,j#4,t#t s, and then
solving the problem for the remaining binary and continuous decision variables. Thereby, the
SA algorithm operates directly on the decision variables of the problem without requiring
any special problem encoding scheme. In addition, the optimal dimensions of the depart-
ments can be determined for a given settings of the binary decision variables z7;,. The pair
(¢/,t") for ' =1,....n and ¢’ =1,...,T represent the move operator in the SA algorithm. If
the current solution p is a local optimum with respect to decision variables 27, and 25,/
then move(i’,t") will lead to the same solution, i.e., u=p;+. Therefore, it is necessary to
ensure that move(i’,t') will result in a different solution than the current solution 4. In order
to achieve this goal, the following constrains are added to Problem CFLP before applying
move(i’,t') on the current solution .

Z Z {Zis’jt’ ()(1— Zis’jt’) + Z;i’t’ (p)(1— jz’t’ } >0 (20)

=" s={z,y}

Z Z { ]t’ ]t’ + ( ]z’t’ (/’L jz’t’} >0 (21)
j=i" s={x,y}

Constraints and enforce the neighbor solution p; to be different from the
current solution p in at least 20 binary decision variables. Constraint enforces at least
one of variables zj;,, to be zero such that 2z} t/(u) = 1. On the contrary, Constraint (21
enforces at least one of variables z7,, to be one such that 27, (1) = 0. Constraints (20))
and (21)) are also used as a dlver81ﬁcat10n technique in the SA algorithm as explained in the
followmg section.

3.2. Solution Initialization

The sequence-pair representation [I5] is used to find an initial solution which is feasible with
respect to the department overlapping constraints, i.e., constraint in Problem CFLP. Let
m1 and 72 be two arrays of n random numbers, and let 71 (¢) and 72 (i) denote the random
numbers in the ith position of the respective arrays. Based on the results of Murata et al.
[21], we can state that each sequence pair (71, 73) corresponds to a feasible setting of binary
variables z7;, of Problem CFLP if they are assigned according to Algorithm

It should be noted that a feasible setting of the binary decision variables which satisfies
the department overlapping constraints does not necessary suffice that the solution will be
feasible with respect to the other constraints. When departments have restrictive aspect
ratio constraints and the facility area is utilized close to 100 percent, it is difficult to find a
feasible arrangement of the departments [I5]. In the literature, this problem is addressed by
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Algorithm 1 Initialization of the current solution p
ijt(:u) <0 VZ#;%tvS
fort=1,...,T do
m1 (i) <= Rand() Vi=1,...,n
ma(i) «— Rand() Vi=1,..,n
fori=1,...n;j=i+1,...,n do
if m1(i) <m(j) and mo(i) <m2(j) then 2§, (u) 1
end if
if 71(i) >m(j) and ma(i) > m2(j) then 25, (u) 1
end if
if m1(i) >m(j) and (i) <m2(j) then z, (1) 1
end if
if m1(i) <mi(j) and m2(i) > m2(j) then 2%, (1) 1
end if
end for
end for
fort=1,...,T do
fori=1,...n;j=i+4+1,...n; s=z,y do
if Rand() <7 then
Fix binary variables z{;, < 25, (p) and 23, < 23, (1)
end if
end for
end for
Solve Problem CFLP to determine T'C'(1)

expanding the facility dimensions and/or modifying department area requirements [4l [8 [10].
To increase the likelihood of finding feasible solutions, we randomly set v percent of the
binary decision variables according to the sequence-pair representation [I5] and use Problem
CFLP to determine the values of the remaining decision variables in the initialization phase.
Parameter v should be selected considering the tradeoffs between the CPU time and the
solution quality. For the test problems, v > 0.60 was used based on our observations in pre-
liminary experiments. Values of v smaller than 0.60 resulted in long runs without improving
solution quality. This strategy does not ensure that the SA algorithm starts with a feasible
solution, yet it reduced the number of the iterations when the first feasible solution was
found in our preliminary experiments.

As stated before, the facility size is also assumed to be much larger than the total area
requirement of departments in many unequal-area DFLP test problems. In real life greenfield
facility designs, the size of the facility is not a hard constraint, thus the facility dimensions
can be expanded to find better arrangement of the departments. However, the CFLP in this
paper is motivated by real-life cases where a facility with limited empty space is repurposed
in each production season. Therefore, the SA algorithm is expected to perform well for test
problems with limited empty space in the facility. In order to quantify infeasibility of a
candidate solution in the SA algorithm, constraint is modified as follows:

¢ +0.50, —qi, <Ls Vi,t,s

where ¢7, denotes how much department 4 violates the north (s =y) and the west (s =)
boundaries of the facility in time period ¢. Variable ¢;, is penalized in the objective function
by multiplying it with (L + L¥) S S > i—iy1 fije- Note that all other constraints are
enforced to obtain neighbor p;4. Therefore, if a solution has ¢, =0 Vi,t,s, then it is also
a feasible for the original problem.



Kulturel-Konak and Konak: Cyclic Facility Layout Problem
ICS-2015—Richmond, pp. 200211, © 2015 INFORMS 207

3.3. The Procedure of the SA Algorithm

The overall procedure of the SA algorithm is given in Algorithm [2| In the preliminary
computational experiments with a canonical SA, we observed that the current solution
converged to local optima, and the search was stagnated rather quickly. Early convergence
to local optima is a typical problem in heuristic algorithms, and various strategies are
recommended in the literature to address this problem. In our case, early convergence is
particularly an important problem because of the way that neighbor solutions are generated
from the current solution. As stated earlier, when the current solution is local optimum with
respect to the move definition, all neighbor solutions yield the same objective function value
with the current solution. In other words, the search become stuck in a plateau from which
the current solution is not able to move away. Therefore, we modified the canonical SA [28§]
to address this problem.

In each iteration of the algorithm, move(i’,t’) is selected randomly and uniformly without
replacement from the set of all possible moves (denoted by set IT in Algorithm . When
all moves in set II are exhausted, the set is reinitiated. Thereby, all possible moves are
considered once in every n x T consecutive iterations. In the beginning of the search, the
reduced MIP problem is solved for an optimality gap of e = 0.05, which is gradually reduced
to zero.

The probability of accepting a neighbor solution pu;w as the new current solution p is
calculated as follows:

{ 1 if TC (i) < TC(p)
p

exp((1+ TUgdICU) =) i TC (i) = TC(p)

(22)

where 7 denotes the current temperature value. The selection probability p is between 0
and 0.5. We preferred this acceptance probability function because of two reasons. Firstly,
using the percent difference instead of the absolute difference between T'C/(p;¢/) and T'C ()
is advantageous because the penalty term, which can be very large for infeasible solutions,
makes it challenging to determine a proper starting value for 7 (7p). Thereby, the initial
temperature 79 can be selected between 0 and 1 without considering the magnitude of the
objective function value. Secondly, the acceptance probability of the canonical SA becomes
1 when T'C(uyp) = TC(p), which is very likely to be observed in our case. In such cases,
neighbor p;¢+ will be selected as the new current solution. On the other hand, the selection
probability in given equation is 0.5 i TC(piry ) = TC ().

A dynamic temperature schedule is used to update 7 based on the historical distance
between the current solution p and the best solution p* in the objective space. Let A rep-
resent the smoothed average distance between T'C(u) and TC(u*) as follows:

TC(p) —TC(w)
TC(w)

where « is the smoothing parameter. The current temperature 7 is updated in each iteration
as follows:

A (1-a)

+al (23)

7 min(Tpmin, k(1 — X)) (24)

The dynamic temperature schedule approach given in equations and leads to
a fast cooling schedule if the current solution is far away from the best solution in recent
iterations and to a slow cooling schedule if the current and the best solutions are very close
to one another in recent iterations. In other words, the SA exhibits a risk-taker behavior if
TC(u*) = TC(u) or a risk-averse behavior if TC(u*) is significantly lower than TC(u) in
recent iterations.

The SA algorithm has also a diversification approach. Note that all possible moves are
exhaustively applied in a random order. If the best solution p* has not been updated after
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all moves in set II are performed, 7 is set to 7y and the value of the parameter ¢ is changed
to 2 if it is 1 and vice versa. Changing the value of the parameter o causes the move
operator to generate neighbors that are different than the ones generated in the previous
iterations. In addition, the value of parameter € is reduced. Figure illustrates an example
for the convergence of the best solution p* and the current solution u along with the current
temperature 7 during the search. As seen in the figure, if the SA algorithm has not been able
to improve the best solution p*, the search moves into a diversification mode by frequently
increasing and decreasing the temperature. On the other hand, when the best solution
w* is being improved, the temperature is steadily reduced, i.e., the search becomes more
deterministic. The SA algorithm adaptively decides the level of diversification (a slow cooling
schedule) or intensification (a fast cooling schedule) based on equation (23)).

1.5 T
= = = Best
Current ||

1.4

c
w

1.1t ‘
0 500 1000

1500 2000 2500 3000
iteration

0.01

0.008 b

0.006 [ b

0.004 b

0.002 i

0 500 1000 1500 2000 2500 3000
iteration

FIGURE 2. An example for the convergence of the SA algorithm and the dynamic temperature
update schedule.

4. Computational Experiments

We benchmarked the performance of the SA algorithm using four test problems. In the
literature, the only test problem for the CFLP is a 15-department and three-period test
problem (P15), which has been recently published based on a real-life case [I1]. In P15, the
layout of the third period is considered as the starting layout for the first period. P15 assumes
a rectangular facility with a limited empty space, and facility dimensions are L* = 30 and
LY=20. In addition, the minimum area requirements of the departments significantly change
over the planning horizon, and the facility area is smaller than the sum of the maximum sizes
of the departments. In addition, the problem has a maximum aspect ratio requirement of 2
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Algorithm 2 Procedure of the SA algorithm
Set update < 0
Set € <+ 0.05
Set 7+ 719
Randomly initiate p and p* < p
for g=1,...,gmar do
update < update + 1
Randomly initialize set II
while I # @ do
Select randomly and uniformly move(i/,t') from II and set IT+ I\ (¢/,¢)
Fix binary variables 2, < 27;,(n) Vi#j,t,s
Unfix binary variables zj,,,, and 23, Vi’ #j,t,s
Add constraints and to the problem
Solve the reduced problem up to € optimality and determine T'C'(p;1/)
Calculate p using equation
if p> Rand() then
14— vy
end if
if TC(p) <TC(p*) then
Set u* <+ u
Set update < 0
Set 01
end if
Remove constraints and (21)) from the problem
Calculate A based on Equation (23))
Calculate 7 based on Equation ([24)
end while
if update >0 then
Set T+ 19
Set 0 < (¢ mod 2)+1
Set € + min(0, e — 0.005)
end if
end for

for each department, which restricts the number of possible layout configurations. Because
of these reasons, finding feasible solutions for P15 is challenging. For this problem, A = 30
was used to ensure a very small area approximation error.

In addition to P15, three test problems, DFLP 12-3, 12-5, and 20-3 from Lacksonen [I3]
were studied. In these problems, the dimensions of the departments are not predefined unlike
the majority of DFLP test cases in the literature. A maximum aspect ratio of 2 is used
to constraint department shapes. Although department area approximation errors were not
provided by Lacksonen [13], the approximation approach was expected to result in maximum
3 percent error according to an earlier work [12]. The SA algorithm was run for five random
replications with A =5 to compare the results with the earlier results with respect to the
same level of area approximation error. In these problems, the fixed rearrangement cost
depends on the size of the departments, and there is no variable rearrangement cost. In
DFLP 12-3 and DFLP 12-5, two new departments replace existing ones in each planning
period. Similarly, three new departments replace the existing ones in DFLP 20-3. In addition
to the rearrangement cost of existing departments, there is a cost for replacing an existing
department with a new one. Therefore, instead of Problem CFLP, the DFLP model given in
[13] was used. In all experiments, the parameters of the SA algorithm were set as gz = 50,
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7o = 0.01, Tjnin = 0.0001, « =0.1, v =0.60 for P15, and v = 0.85 for the other test problems.
The SA algorithm was coded in the AMPL modeling language, and reduced MIP problems
were solved using CPLEX 12.4 with a single thread. All experiments were performed in a
Linux-based computer with a Intel Xeon E5450 Quad-Core 3.0 GHz processor and 32 GB
memory.

The percent area approximation error of department ¢ in time period ¢ was calculated for
the best-feasible solution as follows:

eir = 100max(a;: — 151%,0)/a; (25)

Table [1] summarizes the results found by the SA algorithm in five replications and the
previous best-known solutions of the test problems. In Table €maz = Max(e; : Vi, t) denotes
the maximum area approximation error. As seen in the table, the SA algorithm significantly
improved upon the best solutions of DFLP 12-3, 12-5, and 20-3 reported by Lacksonen [13].
Compared to the Large-Scale SA algorithm [I1]], the SA algorithm improved upon the best-
known results for DFLP 12-5 and P15. In the other two test problems, the SA algorithm
found very close solutions to the best-known solutions, but could not improve them. A major
advantage of the SA algorithm is its robustness without requiring many parameters to tune.
The solutions found in five random replications of the SA algorithm were very close to one
another. As a result, the SA algorithm outperformed the Large-Scale SA [I1] on the average.

TABLE 1. Comparison of the SA algorithm with previous approaches

Best Best Avg. SA SA Avg. %Imp. %Imp.
Problem  [I3] [11] [11] Best Avg. CPU (s) Best  Avg.  emax

DFLP 12.3 7094 6622.8 6728.3 6707.5 6715.0 14007 -1.279  0.197 0.010
DFLP 12,5 12271 114124 11711.5 11090.1 11154.2 21132 2.824 4.758 0.012
DFLP 20.3 12903 12148.6 12325.8 12171.4 12235.8 12235 -0.188 0.730 0.010

P15 - 8376.6 9034.8  8295.8 8431.6 18658 0.965 6.676 0.027

5. Conclusions

In this paper, a simulated annealing algorithm with a dynamic temperature schedule is
introduced for the Cyclic Facility Layout Problem which arises in manufacturing systems
with seasonal product portfolio and demands. In addition, the proposed formulation relaxes
the assumption of predetermined and fixed department dimensions, which is widely used in
the DFLP literature. The proposed formulation is particularly applicable to real-life cases
where a set of departments with seasonal area requirements are to be located in a facility
with limited size. The SA can be applied to other types of facility layout problems because it
operates directly on the decision variables of the mathematical formulation of the problem.
The proposed dynamic temperature schedule is also shown to be effective.
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