
 An Optimization Algorithm for Heterogeneous
Hadoop Clusters Based on Dynamic Load

Balancing
Wei Yan, ChunLin Li, ShuMeng Du, XiJun Mao

Software Engineering
Wuhan University of Technology

No.1186, Heping Boulevard, Wuchang District, Wuhan, Hubei
CHINA

364560925@qq.com

Abstract—Hadoop is a popular cloud computing software,
and its major component MapReduce can efficiently complete
parallel computing in homogeneous environment. But in
practical application heterogeneous cluster is a common
phenomenon. In this case, it’s prone to unbalance load. To solve
this problem, a model of heterogeneous Hadoop cluster based on
dynamic load balancing is proposed in this paper. This model
starts from MapReduce and tracks node information in real time
by using its monitoring module. A maximum node hit rate
priority algorithm (MNHRPA) is designed and implemented in
the paper, and it can achieve load balancing by dynamic
adjustment of data allocation based on nodes’ computing power
and load. The experimental results show that the algorithm can
effectively reduce tasks’ completion time and achieve load
balancing of the cluster compared with Hadoop's default
algorithm.

Keywords—Hadoop; heterogeneous cluster; data allocation;
load balancing;

 INTRODUCTION
Cloud computing was first popularized in 2006 by Amazon,

which can provide virtualization, dynamic resource pool and
high availability [1][2]. Hadoop is a popular cloud computing
platform based on HDFS and MapReduce[3].Its main
component MapReduce can implement parallel computing of
multiple nodes, then returns results to meet the needs of users,
and it has high fault tolerance[4][5].

In the process of MapReduce, the Master node sets tasks to
each Slave node in average through the default algorithm, and
Hadoop's default balance strategy is make each node’s load
rate consistent. The strategy is generally effective in a
homogeneous environment [6].However, in order to make full
use of the system resources, the storage space of each node
may not be the same. If the computing capacity of nodes is
added to the problem, the default strategy of Hadoop obviously
can’t meet the requirements of cluster’s load balancing. For
example, if a node's computing power is weak but its storage
space is very large, the default strategy will make the node
become a high load node which determines the efficiency of
cluster. In this case, the default scheduling policy is
invalid[7].So load balancing is an important index to evaluate

the performance of MapReduce even the entire Hadoop
cluster[8].

The main contributions of this paper for the problem are as
follows:(1) In order to study the characteristics of Hadoop’s
heterogeneous cluster, this paper design and implement a
heterogeneous Hadoop cluster model based on dynamic load
balancing by real-time monitoring. (2) In order to reduce the
negative impact of heterogeneous cluster’s unbalance load, a
maximum node hit rate priority algorithm (MNHRPA) is
proposed and implemented in the model to achieve load
balancing and improve the efficiency of cluster.

The remainder of this paper is organized as follows:
Related work is introduced in Sec. II. A heterogeneous
Hadoop cluster model based on dynamic load balancing is
built in Sec. III. Sec. IV. describes and implements MNHRPA.
Sec. V evaluates the effectiveness of MNHRPA compared
with the default priority algorithm and another greedy priority
algorithm through experiment. Summary and prospect are
proposed in Sec.VI.

 RELATED WORK
The efficiency of Hadoop is very high in the homogeneous

cluster. If each node’s storage and the computing ability are
the same, the result can be fine. However, for the nodes
differences in computing power and storage capacity common
situation, which causes the problem of unbalance load [9].A lot
of problems can be caused when the data load among nodes
becomes unbalanced. It will indirectly lead to reduced
efficiency of the cluster, and the execution time of the job will
become longer [10]. At home and abroad, many scholars have
researched Hadoop's optimization algorithms based on the
problem, mainly from two directions, as the adjustment before
data allocation and the adjustment after data allocation.

The scholars have done a lot of research in the way of the
adjustment before data allocation. For example, reference [11]
takes the heterogeneity of nodes into account, and puts forward
a placement strategy according to the proportion of the storage
of data, and reference [12] considers that the data generated by
the reduce phase can be divided into more partitions, adjusts
the partition size to balance the load by dynamically, but they

2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies

978-1-5090-5081-9/16 $31.00 © 2016 IEEE

DOI 10.1109/PDCAT.2016.60

250

don’t consider the influence of nodes’ computing power
differences in a heterogeneous cluster. Reference [13]
proposes a greedy priority algorithm, which adjusts the load by
the calculation ability of each node in advance, but it doesn’t
take the dynamic changes in the computing power of the nodes
into account.

In addition, the scholars also have a lot of efforts for the
adjustment after data allocation. Reference [14] proposes a
data migration strategy based on node’s load regulation under
heterogeneous environment. In reference [15], Fan et al
consider to change the map task’s assignment to reduce
unbalance load’s effect on the performance of the cluster.
These methods have some effect on load balance of each node.
However, they do not take into account these methods will
greatly increase the mobility of data, which has a great impact
on the performance of the cluster and data security.

In conclusion, most scholars have researched unilateral
problem of cluster’s heterogeneity, and few combine them.
This is not very suitable for heterogeneous cluster model in the
actual environment. Based on it this paper starts from
MapReduce and take problems into account from the two
aspects of computing power and storage capacity of nodes, to
design and implement a heterogeneous Hadoop cluster model
based on dynamic workload adjustment by real-time
monitoring, which can achieve load balancing and improve
cluster performance.

 MODEL AND METHOD

 The heterogeneous cluster model based on dynamic load
balancing
In order to achieve load balancing and improve cluster

performance in heterogeneous cluster, this paper adds the
monitoring module and rewriting a new selection algorithm to
change the task process of MapReduce. A heterogeneous
Hadoop cluster model based on dynamic load balancing can be
described by Figure 1.

user1 user2 user3

client2client1 client3

Master

(Slave1) (Slave2) (Slave3) (SlaveN)

Monitor

MNHRPA

Executer

Fig. 1. The overview of the model

As shown in Figure 1, after the user submits the job
through the client, the Hadoop’s Master node receives jobs and
begins Job distribution through the MapReduce process to the
Slave nodes. When the master’s jobtracker receives heartbeats
from Slave’s tasktrackers, it will assign suitable tasks to
tasktrackers. Heartbeats are passed between the jobtracker and
the tasktrackers. The black-bordered box is the most important
part of this paper, and that is the refinement of the Slave’s
tasktracker in MapReduce. Each tasktracker has its own
monitoring module and adjust its load dynamically through
MNHRPA.

 Formal description of related parameters and definitions
 Related definitions and formal description of the nodes
a) Set node in the model to x:Saved with Set J, J(x) is

used to represent one node and so J (1) can represent the first
node, and so on. Total number of nodes is expressed as Nnode.
Then x [1,Nnode].

b) Set node’s CPU performance to Pcpu:

)1(
)1()(
)1()()(

)(
�
�
�

=
>××

=
corecpu

corecorecpu
cpu nxf

nxnxf
xP

ε

Where fcpu is CPU’s basic frequency, ncore is CPU’s core
number. The model selects the two main parameters to
evaluate the performance of CPU.� is a parameter when
CPU’s core is not only 1,and its reasonable value is generally
between 0.8~0.9 according to references.

c) Set node’s memory performance to Pram:

)()(xsizexP ramram = (2)

Where sizeram is size of the memory’s RAM. The model
selects the main parameters to evaluate the performance of
memory.

d) Set storage capacity to Snode:
The node’s storage in cluster is available for use in the

HDFS file system, so Snode(x) is storage capacity of the node x.
e) Set used capacity to Unode:
The node’s storage in the cluster has been used in the

HDFS file system, so Unode(x) is used storage capacity of the
node x.

 Related definitions and formal description of the model
a) Set node’s relative computing power to Pnode:

)min(
)(

)min(
)(

)(
ram

ram

cpu

cpu
node P

xP
P
xP

xP βα += (3)

As shown in the formula (3), it’s an important definition
of the ratio in the model. �,� are resources’ weight
coefficients, they represent respectively the important
proportion CPU and memory .According to the definition, it
can be known that �+�=1.By consulting information and

251

research, Hadoop’s task types can be divided into CPU-
intensive and I/O-intensive, thus the value of �,� will change
with the change of task types, obviously � in the CPU-
intensive tasks accounted for a relatively high,� in the I/O-
intensive tasks accounted for relatively high. For example, in
CPU-intensive task WordCount they should be defined �=0.8,
�=0.2.

b) Set the load ratio of node to Rnode(x):

)4(%100

)(
)()(×=

xS
xUxR

node

node
node

This definition is the percentage of the used storage of the
node accounted for the total storage of the cluster.

c) Set the load ratio of cluster to Rcluster:

)5(%100
)(

)(
%100

1

1 ×=×=

�

�

=

=
node

node

N

x
node

N

x
node

cluster

cluster
cluster

xS

xU

S
UR

As shown in the formula (5), this value is an important

index of cluster’s load balancing. That should be the used
capacity of all nodes in the cluster to occupy the percentage of
the storage capacity of all nodes.

d) Set maximum load rate to Rmax:

)6(%100])1([max ××−+= clusterRR γγ

As shown in the formula (6), researches show that
clusters of long time in full load operation have great
influence on the performance of cluster. So in order to ensure
the success rate of the task, this paper sets a threshold, that is,
the maximum load rate defined here. When one node load
exceeds the threshold value, Hadoop system should not
continue to assign tasks to this node. � is a parameter that is
set by the MapReduce system, whose default value is
0.8.When the cluster is fully loaded, �=1,so the maximum
load rate becomes 100% automatically.

e) Set node hit rate to Rhit :

)7(%100

)max(

)(
)(

)(R ×=

node

node

node

node

hit

U
P

xU
xP

x

As shown in the formula (7), it’s a key parameter. If a
node’s computing power is stronger and it has less used
capacity, then the node's hit rate is higher.

 Optimization of priority algorithm
 Implementation of monitoring module

Ganglia is an open source’s cluster monitoring project
launched by Berkeley UC, which is designed to measure the
cluster's node information. It can be used to monitor the
performance of the system, such as: CPU, memory, hard disk
utilization, I/O load, network traffic, etc. The information in
this paper such as the number of nodes, load rate and so on
can be directly or indirectly acquired through the project.
Thus the monitoring module of the Hadoop cluster model can
be implemented through the rational use of the function of
Ganglia and modify the Hadoop’s scheduling code.

 Selection of slave nodes
After completing the definition and parameters, the model

can achieve an optimized priority algorithm: When the job has
been submitted and enters the waiting allocation stage, the
model Create three Hashtable type’s collections named
Nodes1 Nodes2 and Nodes3,which store<x,Rhit(x)> of the
nodes as <key, value> key-value pair. Then, according to
Rnode(x), Rcluster and Rmax, The nodes in the cluster are allocated
to three Hash tables according to the rules of Table I.

TABLE I. THE CONDITION OF NODE GROUPS

Storage mode Storage content

Hashtable
 Nodes1 {x|Rnode(x)�Rcluster}

 Nodes2 {x|Rcluster<Rnode(x)<Rmax}
 Nodes3 {x|Rnode(x)�Rmax}

The utilization rate of the node in Node3 is higher than

the maximum load rate, so a new task shouldn’t be assigned
into it.The node in Node3 can send the heartbeat messages of
refusal of receiving task to the Master node. Sort notes in
Nodes1 and Node2 according to the value that nodes’ hit rate
from high to low. When the new task is assigned to the
Reduce stage, the first node of the Node1 is chosen. If the
node is unable to meet the requirements of storage space, then
select the second nodes of the hashtable1, and so on. If the
Nodes1 is empty, select the node in the Nodes2 in the same
way. When the Slave node have been chosen successfully, it
can send the heartbeat messages of preparation for receiving
task to the Master node. Finally the Master node can complete
the task allocation.

 Allocation of the tasks
After each successful assignment of a new task, the node

data should be updated in the three tables by reacquiring the
monitoring information, then repeat the process of selection of
reduce nodes for the next task assignment. If the task can’t be
assigned to a proper node by the process, it is indicated that
the cluster is fully loaded now, and it needs to wait for the
cluster to perform the task. After the whole tasks are assigned,
the algorithm is over.

 IMPLEMENTATION OF ALGORITHM MNHRPA
This section introduces the maximum node hit rate

priority algorithm (MNHRPA) and list its pseudo code
described in Table II, the explanation about the pseudo code is
given. At last the paper conducted a time complexity analysis
of the algorithm.

252

Lines 1~5 represent when a job complete the submission
phase, the model firstly gets the current resource usage
information of each node through the monitoring module,
through the process parameters and preconditions of the
initialization algorithm can be built. Lines 6~28 describe the
specific process of the algorithm. According to the difference
of the node load, each node is assigned to the three hash table.
Then the model can select the appropriate nodes for task
allocation by using the node's load rate and hit rate. Line
29~30 indicates allocation of the tasks after a successful
assignment of new task. After repeating the node selection
methods until all tasks are assigned. The cluster can continue
to the next phase and the algorithm is over.

TABLE II. THE PSEUDO CODE OF MNHRPA

 Input: Monitoring information Rnode(x):the load ratio of node,Rcluster:the load ratio of cluster Rmax:maximum load rate,Rhit(x):node hit rate,x:node number Output: Statistical results of task allocation of nodes Steps:
1. Number the nodes and receive a new job
2. Run the job and process tasks
3. Get nodes’ current resource information
 through the monitoring module
4. Calculate Rnode(x) Rcluster Rmax and Rhit(x)
5. Create three Hashtables:Nodes1 Nodes2 and Nodes3

//<Key,Value>�<x, Rhit(x)>
6. for each node x
7. if Rnode(x)�Rmax
8. Put <x, Rhit(x)> into Nodes3,ignore these nodes
9. else
10. if Rnode(x)>Rcluster
11. Put <x, Rhit(x)> into Nodes2
12. else
13. Put <x, Rhit(x)> into Nodes1
14. end for
15. if Nodes1 isn’t empty
16. Sort descending the Nodes1 by value
17. for each node in Nodes1
18. if the node satisfies the condition
19. Select the node as the result
20. end for
21. else
22. Sort descending the Nodes2 by value
23. for each node in Nodes2
24. if the node satisfies the condition
25. Select the node as the result
26. end for
27. Choose the selected node and send the heartbeat messages
28. Schedule the current task to the selected node
29. Update the information of all nodes and repeat step3~step28
30. Run the task and collect result

 Through the analysis of the above algorithm, it can know
that its time complexity is O (n) which compare the size of
cluster utilization and classify all the nodes into three Hash
tables. And its time complexity is O (nlog2n) which uses the
Collections.Sort method to sort the three hash table according
to its value. So according to the definition of the time
complexity of the algorithm, the time complexity of the
improved algorithm is O (nlog2n).It is better than the same
type of greedy priority algorithm whose time complexity is O
(n2).

 EXPERIMENTAL DESIGN AND ANALYSIS

 Experimental design
In order to verify the feasibility and effectiveness of the

proposed algorithm (MNHRPA), in this paper, a
heterogeneous Hadoop cluster whose each node’s
configuration is different is built, and classical test cases
WordCount and TeraSort are used to carry out the experiment.
The experimental results show the advantage of the algorithm.

 Experimental environment
In this experiment, the total heterogeneous cluster with 6

nodes, there are differences in the hardware configuration. Its
specific configuration chart is as follows Table III.

The 6 physical machines are installed Ubuntu14.04
operating system, and its Hadoop version is 0.20.2.After the
understanding of the Hadoop copy placement strategy and
setting methods. This paper decides to put 6 nodes in a rack.
And the number of copies is set to 1.Then the effects of
Hadoop copy scheduling on the scheduling algorithm can be
eliminated.

 Test case
In order to obtain more reasonable experimental results,

in this paper, mature CPU-intensive task WordCount and I/O-
intensive task TeraSort are chose to complete the comparison
experiment. In order to ensure the accuracy of the results,
several sets of different data are randomly acquired.

 Evaluation index
Because the algorithm used in this paper is mainly used

in heterogeneous clusters, and the algorithm is proposed for
the load balance of the cluster and shorten the execution time
of the job. Therefore, the main evaluation indexes should be
focused on cluster’s load condition and job’s completion time.

TABLE III. HETEROGENEOUS HADOOP CLUSTER’S NODE CONFIGURATION

Number CPU Core Memory HDFS Role IP
1 3.3GHz 4 8G 80GB Master 192.168.1.10
2 3.0GHz 2 4G 40GB Slave1 192.168.1.11
3 2.3GHz 1 4G 60GB Slave2 192.168.1.12
4 1.9GHz 1 2G 30GB Slave3 192.168.1.13
5 2.3GHz 2 2G 20GB Slave4 192.168.1.14
6 2.4GHz 2 4G 40GB Slave5 192.168.1.15

253

 Benchmark algorithm
The maximum node hit rate priority algorithm

(MNHRPA) proposed by the paper is compared with the
Hadoop default priority algorithm (DPA) and the greedy
priority algorithm (GPA) proposed by reference [13].They are
set the appropriate type of operation and the appropriate
parameters to carry out the experiment.

 Experimental results and analysis
In order to prove that the optimization algorithm

proposed in this paper can balance the load and improve the
efficiency of the cluster, this paper designs and carries out the
following comparison experiments from two aspects of the
job's completion time and the cluster's load condition. In the
following experiments the parameters have been set that
�=0.9 in formula (1) and �=0.8 in formula (6).

 The comparison experiment of job's completion time
The paper selects the job WordCount and TeraSort to

complete experiment. The job’s configuration including �,� in
formula (3) is displayed in table IV in detail:

TABLE IV. JOB’S CONFIGURATION IN THE EXPERIMENT

Job’s Type Job’s Size Job’s Parameter
WordCount 200M 400M 2G 4G 10G �=0.8,�=0.2

TeraSort 200M 400M 2G 4G 10G �=0.2,�=0.8

Through the configuration of the comparison experiment

of job's completion time, in this paper, the experiment was
carried out successfully, and the comparison of the three
algorithms was drawn.

Fig. 2. Comparison of the completion time of the data sets with different

sizes under WordCount

Figure 2 and Figure 3 respectively show that using three
kinds of algorithm’s execution of 200M, 400M, 2G, 4G, 10G
sizes of WordCount (�=0.8,�=0.2) and TeraSort
(�=0.2,�=0.8) to the comparison of job completion time.

Fig. 3. Comparison of the completion time of the data sets with different

sizes under TeraSort

 According to the two comparison experiment some
results can be indicated: With the increase of the amount of
data, the efficiency of the use of MNHRPA will be more and
higher with the increase in the size of the job, and its
efficiency is better than GPA. In the data to 10G, compared
with DPA, it can reduce the execution time of about 15.6% in
WordCount and 10.7% in TeraSort.

 The comparison experiment of cluster’s load condition
The paper selects the job WordCount and TeraSort to

complete experiment. The job’s configuration is the same as
table IV except that job’s size is just 20G, and the job is
executed ten times in a row.
 Through the configuration of the comparison experiment
of cluster’s load condition, in this paper, the experiment was
carried out successfully, and the comparison of the three
algorithms was drawn.

Fig. 4. Load comparison on different nodes in 20G data under WordCount

254

Fig. 5. Load comparison on different nodes in 20G data under TeraSort

Figure 4 and Figure 5 respectively show that using three
kinds of algorithm’s execution of 20G size of WordCount
(�=0.8,�=0.2) and TeraSort (�=0.2,�=0.8) to the comparison
of cluster’s load condition. Then some results can be indicated
MNHRPA is essentially the same for each Reduce load, while
the load of each Reduce using DPA has a large data
fluctuation. GPA is better than DPA, but it is less than
MNHRPA.MNHRPA's load balancing degree increases
44.4% compared with DPA and its job's execution time
reduces 8.4% compared with GA.

Through the above experiment, some conclusion can
acquired that in terms of load and time efficiency, the
improved algorithm MNHRPA is obviously better than the
default algorithm.

 SUMMARY AND PROSPECT
After study the Hadoop’s default algorithm is found that

it is not adapted to heterogeneous cluster, and it is easy to
prone to unbalance load. A heterogeneous Hadoop cluster
model dynamic load balancing is proposed. The model uses
the monitoring module to monitor the indicators of the node
in real time, and through the design of the improved algorithm
to change the task’s node allocation, so that the cluster can
achieve load balance. Through the experiment can be seen
that the designed algorithm can effectively balance the cluster
load and speed up the job completion. The effect will be more
obvious when the cluster size is larger and the heterogeneous
situation is more complex.

In future research, the research on the load balancing of
heterogeneous clusters should be paid more attention. Special
attention is paid to the influence and optimization of different
rack and replication strategy on heterogeneous clusters.

ACKNOWLEDGMENT
The work was supported by the National Natural Science

Foundation (NSF) under grants (No.61472294, No.61672397)
, Key Natural Science Foundation of Hubei Province (No.201
4CFA050).

REFERENCE
[1] Mell P, Grance T. The NIST definition of cloud computing

[J].Communications of the ACM, 2011, 53(6):50-50.
[2] Aggarwal M. Introduction of Cloud Computing and Survey of

Simulation Software for Cloud [J]. TIJ's Research Journal of Science &
IT Management - RJSITM, 2013, 2(12).

[3] Taylor R C.An overview of the Hadoop/MapReduce/HBase framework
and its current applications in bioinformatics[J]. Bmc Bioinformatics,
2010, 11 Suppl 12(Suppl 12):3395-3407.

[4] Mmel R. Google's MapReduce programming model — Revisited[J].
Science of Computer Programming, 2008, 70(1):1-30.

[5] Chen H, Luo W, Wang W, et al. A novel real-time fault-tolerant
scheduling algorithm based on distributed control systems[C].Computer
Science and Service System (CSSS),2011 International Conference on.
IEEE, 2011:80-83.

[6] Zaharia M, Konwinski A,Joseph A D, et al. Improving MapReduce
Performance in Heterogeneous Environments.[J]. Osdi, 2008:29-42.

[7] Ananthanarayanan G, Agarwal S, Kandula S, et al. Scarlett: coping with
skewed content popularity in MapReduce clusters[J]. In EuroSys,
2011:287-300.

[8] Srirama S N, Jakovits P, Vainikko E. Adapting scientific computing
problems to clouds using MapReduce[J]. Future Generation Computer
Systems, 2012, 28(1):184-192.

[9] Xie GL, Luo SX. Study on application of MapReduce model based on
Hadoop[J]. Microcomputer & Its Applications, 2010.

[10] Kwon Y C, Balazinska M, Howe B, et al. SkewTune in action:
mitigating skew in MapReduce applications[J]. Proceedings of the Vldb
Endowment, 2012, 5(12):1934-1937.

[11] Farhat, F., Tootaghaj, D., He, Y., Sivasubramaniam, A., Kandemir, M.
and Das, C., 2016. Stochastic modeling and optimization of stragglers.
IEEE Transactions on Cloud Computing.

[12] Slagter K, Hsu C H, Chung Y C, et al. An improved partitioning
mechanism for optimizing massive data analysis using
MapReduce[J].Journal of Supercomput- ing, 2013, 66(1):539-555.

[13] Chen R, Zeng W H, Fan K J. Research on Hadoop Greedy Scheduler
Based on the Fair[J]. Applied Mechanics & Materials, 2011,
145:460-464.

[14] Shen Q, Zhang L, Yang X, et al. SecDM: Securing Data Migration
between Cloud Storage Systems[C].IEEE Ninth International
Conference on Dependable, Autonomic and Secure Computing. IEEE
Computer Society, 2011:636-641.

[15] Fan Y, Wu W, Cao H, et al. A Heterogeneity-aware Data Distribution
and Rebalance Method in Hadoop Cluster[C].Chinagrid Conference.
2012:176-181.

255

