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ABSTRACT 
Large volume of data is produced by various applications in the 

world, processing such scale of data has great challenges in not 

only performance but also energy efficiency. Researchers 

propose various techniques to either improve the performance or 

the energy efficiency. The techniques of these two trends, 

however, are significantly different. When both performance and 

energy efficiency are concerned in the big data systems, how to 

get balance has become an issuing and challenging problem for 

data center administrators and hardware designers. In this paper, 

we conduct comprehensive evaluations on two representative 

platforms with different types of processors. We quantify the 

performance and energy efficiency, relating the evaluation 

results to micro-architectural activities and application 

characteristics. Two interesting findings are made from our 

evaluations: (1) the performance and energy efficiency are not 

only determined by the hardware technology, but also associated 

with the application characteristics; (2) there is no ever-

victorious microprocessor in terms of both performance and 

energy efficiency in all the big data workloads. Based on the 

findings and quantified evaluation results, we provide great 

guidance and implications for both data center administrators 

and big data system designers, and we argue that a hybrid-core 

is an efficient way to improve the energy efficiency of big data 

systems with minimum performance degradation. 
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• Computer systems organization → Distributed

architectures
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1. INTRODUCTION
Currently, massive data is produced by various applications 

every day. According to the IDC white book, the total amount of 

data all over the world will reach 35ZB by 2020[1]. Processing 

such scale of data has great challenges in not only performance 

but also energy consumption. In a data center containing 50,000 

machines, the energy and related costs can account for a third of 

the monthly TCO (Total Cost of Ownership)[2] and it always 

increases along with the increment of monthly TCO[3]. As a 

result, the energy cost severely limits the scalability of data 

centers, and it has become one of the first-class concerns in both 

the industry and academia. 

Microprocessor manufactures pursuing various architectures and 

strategies toward improving the data processing performance 

and energy efficiency. The mechanisms to improve the 

performance and energy efficiency, however, are significantly 

different. High performance requires sophisticated techniques: 

faster clock speed, bigger cache size, deeper cache hierarchy, 

more complicated instruction execution pipeline, etc. All these 

techniques require more transistors and registers, which then 

lead to more power consumption. The core owning these 

techniques is called "brawny core", such as the Intel Xeon series. 

On the other hand, in order to reduce power consumption, 

different mechanisms are implemented: simpler instruction 

pipeline, general computation units instead of specific units, 

smaller cache hierarchy, etc. The core with lower power 

operations is always called "wimpy core", such as the Intel 

Atom series. Both performance and energy efficiency are 

concerned by users, and finding the balance between these two 

trends is an urging but challenging issue. There have been some 

research proposals for specific applications, such as web search, 

internet service, data mining, etc. Some proposals favor wimpy 

cores with the aim of high energy efficiency, and most of the 

applications are data-intensive. Some research work questions 

the efficiency of using wimpy cores and favor brawny cores, 

most of the work focus on the computation-intensive 

applications or complex data queries. The other research work 

proposes the hybrid of these two kinds of cores at the chip-level 

or system-level. In general, most of the existing work focuses on 

specific applications. To our best knowledge, there has been no 

work analyzing the performance and energy efficiency on big 

data applications, which owns a wide spectrum of workloads 

and unique characteristics. 

In this paper, we conduct comprehensive evaluations of big data 

applications on two representative platforms with different types 

of processors. We first compare the performance and energy 

efficiency of brawny and wimpy core: Xeon E5310 and Atom 

D510, and relate the comparisons to micro-architectural 

activities to check the impacts of different processor techniques. 

From the results, we draw two conclusions. First, the 

performance and energy efficiency of big data applications are 

not only determined by the processor architecture or hardware 

technology, but also associated with the application 

characteristics. Second, there is no ever-victorious core in terms 

of both performance and energy efficiency for all the big data 

workloads. We argue that a hybrid-core is an efficient way to 
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improve the energy efficiency of big data systems with 

minimum performance degradation. 

To explore the feasibility of hybrid core designs in big data 

applications, we breakdown the execution procedures of all the 

eight big data workloads into map and reduce phases, and 

analyze the characteristics of the phases in isolation. Based on 

the analysis on both brawny and wimpy cores, we give the trend 

of hybrid cores on big data workloads - assigning the map and 

reduce tasks to different cores according to their characteristics. 

We highlight the potential of the proposed hybrid core by 

evaluating the performance and energy efficiency of brawny 

core-only clusters, wimpy core-only clusters, and hybrid-core 

clusters. We argue that the hardware technologies are only part 

of the solution to improving the performance and energy 

efficiency of big data systems, and the workload-aware software 

technologies are of great importance. The main contributions of 

this paper include: 

1) We quantify the performance and energy efficiency of

hardware platforms based on brawny core Xeon E5310

and wimpy core Atom D510 with big data applications,

and conduct deep analysis on how the different

processor techniques and workload characteristics

impact the performance and energy efficiency.

2) We break down the big data workload execution into

map and reduce phase, and investigate the performance

and energy efficiency characteristics of different phases

on both brawny and wimpy core. Based on the analysis,

we propose a novel hybrid strategy to assign map and

reduce tasks to different kinds of cores.

3) We explore the feasibility and potential of the proposed

hybrid strategy and present implications for the

workload- aware optimization for the performance and

energy efficiency of big data systems.

The rest of this paper is organized as follows. Section 2 

characterizes the big data workloads used in this study. Section 

3 describes our evaluation methodology. Section 4 quantifies the  

performance and energy efficiency of big data workloads on two 

representative hardware platforms, based on which we presents 

implications for big data system optimizations., and explores the 

feasibility of hybrid core designs. Related work is provided in 

Section 5. 

2. THE BIG DTA WORKLOADS
The big data systems support comprehensive and diversified 

workloads, which are also changed frequently as the rapid 

evolution of big data applications and systems. During the 

evaluation of this paper, we will explore the implications of big 

data workloads on different big data systems, so the application 

type and data volume are two major dimensions during the 

comparison. In order to make the comparison representative and 

reasonable, the big data benchmark needed should meets two 

requirements: first, the workloads provided by the benchmark 

should be representative for the ongoing big data applications; 

secondly, the data sets should be diverse and representative in 

terms of both data types and sources, and the data generation 

tool in the benchmark should provide scalable data volumes. 

In this paper, we adopt BigDataBench[4], which is an open-

sourced big data benchmark suite from Internet Services[4]. 

BigDataBench investigates the comprehensive big data 

applications in the internet service field, and provide nineteen 

representative workloads from dimensions of both application 

scenarios and application types. It also provides a scalable data 

generation tool to create synthetical data while keeping the 

significant characteristics of real data. BigDataBench classifies 

the big data applications into three types: realtime analytics, 

offline analytics, and online service. We focus big data analytics 

in the evaluation, and choose eight workloads belonging to 

realtime and offline analytics, the details are shown in Table1. 

Three basic relational queries included select query, aggregation 

query and join query are chosen for realtime analytics. Five 

workloads are from offline analytics, they are micro benchmarks 

including sort, grep, and wordcount, and two basic data analytic 

workload in the social network and e-commerce: kmeans and 

naive bayes.  

Table 1. Details of Chosen Workloads 

Workload Time Complexity Characteristics 

Sort O(n*log2n) Integer comparison and 
calculation 

WordCount O(n) String comparison and 
integer calculation 

Grep O(n) String comparison and 
integer calculation 

Naïve Bayes O(m*n) Floating-point computation 

Kmeans O(m*n) Floating-point computation 

Select Query O(n) String comparison 

Aggregation Query O(n) String comparison and 
integer calculation 

Join Query 
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String comparison and 

integer calculation 

3. EVALUATION METHODOLOGY

3.1 Experimental Platforms
During the evaluation, we choose two representative hardware 

platforms from brawny and wimpy fields respectively, the 

configuration details are shown in Table2. The Xeon E5310 

belongs to brawny cores, which focuses on performance 

optimization and own the TDP (Thermal Design Power) of 80W. 

It supports out-of-order execution and four instruction issues, 

which are used to optimize the instruction execution speed. Also 

they provide relatively higher speed buses to speed up data 

transfer. These mechanisms require more transistors and 

registers, and then leads to more power consumption.  

Table 2. Platform Configurations 

Model Xeon E5310 Atom D510 

No. of Processors 1 1 

No. of Cores /CPU 4 2 

Frequency 1.6GHz 1.66GHz 

L1 Cache(I/D) 32KB/32KB 32KB/24KB 

L2 Cache 4096KB*2 512KB*2 

L3 Cache NONE NONE 

TDP 80W 13W 

Pipeline Depth 14 16 

Superscalar Widths 4 2 

Architecture X86 X86 

Hyper-threading No Yes 

Out of Order Execution Yes No 

Specified Float Point Unit Yes Yes 

Memory 4GB,DDR2 4GB,DDR2 

Disk SATA@7200RPM SATA@7200RPM 

Ethernet Network 1Gb 1Gb 
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Atom D510 is based on Intel Pine Trail architecture[5], it 

includes two cores with the base frequency of 1.66GHz per CPU. 

The Atom D510 adopts the in-order execution pipeline issuing 

two instructions every cycle, which requires much less transistor 

count to reduce power consumption. The last level cache shared 

by the two cores is the L2 cache of size 512KB*2. The low 

power operations make the Atom D510 consume much less 

power than the brawny cores, and its TDP is only 13W. In order 

to improve parallelism and make up for the lack of powerful 

execution architecture, it adopts the hyper-threading technology.  

We construct two typical big data systems deployed Hadoop 

1.0.2 based on these processors. Both of them consist of fice 

homogeneous nodes connected through 1Gb/s switch(one master 

and four slaves).  In order to make the comparison fair and 

reasonable, and conduct the evaluation focused on CPU 

technologies, we follow several rules. First, we optimize the 

application execution performance by adjusting Hadoop 

configuration parameters of all the four platforms according to 

their hardware configurations, all the settings refer to the 

guidance on Hadoop official web site. Second, we collect the 

performance and energy efficiency results of all the slaves and 

normalize them by the number of CPU during the comparison. 

During the data processing on Hadoop, the tasks are actually 

executed on slaves, and master is only responsible for task 

scheduling with light load, which can hardly become the 

bottleneck in small-scale cluster. We focus on the work nodes, 

and don't consider the impact of master during the evaluation. 

CPU is the basic unit of the emerging hardware technologies, 

and it is also the basic processor selection unit in data center 

construction, so all the evaluations of this paper are normalized 

to the CPU level. 

3.2 Metrics 
The metrics required in our evaluation should be directly 

perceived, and what's more, they should reflect the integrated 

processing capacity of big data systems. We evaluate big data 

systems from two aspects: data processing performance and 

energy efficiency, and the corresponding metrics we choose are 

Data-Processed-Per-Second (DPS in short)[7] and DPS-Per-

Watt. DPS refers to the data processed capacity in unit time, and 

DPS-Per-Watt originates from the classical metric of measuring 

energy efficiency called Performance-Per-Watt. The calculation 

formulas of these two metrics are shown below. 

 Data Input Size
DPS

RunTime
  (1) 

DPS
DPS Per Watt

Power Consumption
         (2) 

Data Input Size is the input data size of the workload, Run Time 

represents the execution time, and  Power Consumption is the 

average power cost of running this workload. According to the 

definition of power, power=energy consumed/execution  time, 

we can find that the computation formulas of DPS-Per-Watt can 

also be computed as the input data size divided by the energy 

consumed. So the DPS-Per-Watt can also be denoted as 

DPJ(Data Processed Per Joule). 

3.3 Power Measurement 
During the evaluation of four platforms, we compare the power 

efficiency from CPU level. To quantify the power dissipated by 

the CPU, we use an indirect power measurement method. The 

motherboard use specific power connector at the voltage 

regulator module to supply electricity for the CPU, which meets 

the SSI EPS 12V specification. We identify the 12V cables 

provide power for the CPU, and use a Hall-effect current clamp 

(FLUKE i30s) to measure the current of the cables, then collect 

the current measurement by a multimeter (FLUKE norma4000) 

every second. We compute the power consumed by CPU 

through the stable voltage and the measured current. During the 

preliminary exploration of CPU Hybrid, we use the power of all 

slave nodes to compute the power efficiency. In order to 

measure the power consumed by all the slave servers in the 

cluster, we cascade a power meter in the circuit of the servers, 

and collect the power measurement every second. 

The processors evaluated in this paper provide hardware 

performance counters to measure the architectural events. We 

use the Linux profiling tool called Perf to collect about 20 

events. In order to get the OS-level performance data, we access 

the proc file system and collect the data every second. 

4. RESULTS AND ANALYSIS
In this section, we measure the performance and power 

efficiency of eight big data workloads on two typical hardware 

platforms, and analyze the differences of wimpy cores and 

brawny cores. First of all, we give the general characteristics of 

different workloads on all the platforms. Then we compare the 

Xeon E5310 and Atom D510, which are the typical brawny core 

and wimpy core. 

4.1 The Basic Comparison of Brawny Cores 

and Wimpy Cores 
In order to guarantee the stability of all the evaluation results, 

for every experiment, we run at least two times, and take the 

average value to eliminate bias caused by uncertainty factors. 

Both the performance and power efficiency metric are 

normalized to processor, which makes the analysis focus on the 

different technologies of CPU. We normalized the numbers of 

DPS and DPJ on each platform to that of the Atom D510, and 

show the ratios in Figure 1 and Figure 2. 

Figure 1. DPS /Processor of Each Workload Normalized to Atom 

Figure 2. DPJ/Processor of Each Workload Normalized to Atom 
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4.1.1 The Performance Comparison 
We set the DPS values of AtomD510 as the baseline, and 

analyze the speedup on the brawny core XeonE5310, which can 

be computed by DPS of Xeon/DPS of Atom. Generally speaking, 

the performance of Xeon is 1.4-4 times higher than that of Atom, 

and the gap between these two platforms are associated with 

both workloads and data size. The DPS ratios of Bayes and 

KMeans are the biggest, which get almost 4 times. Followed by 

Grep and Wordcount with 2-2.5 times higher, and the relational 

queries with 1.5-2 times higher. We analyze the evaluation 

results from two aspects: the CPU technology differences and 

the workload characteristics.  

The basic frequency of Xeon and Atom core are 1.6 GHz and 

1.66 GHz, and their hardware thread numbers on per processor 

are the same. The Xeon E5310 has much more sophisticated 

instruction pipeline than the Atom D510: Xeon E5310 issues 

four instructions per cycle, while the Atom D510 issues two 

instructions per cycle; the Xeon E5310 supports Out-Of-Order 

execution to speed up the instruction execution, while the 

AtomD510 only supports In-Order execution. Figure 3 

illustrates the IPC (Instruction per Cycle) ratio of Xeon E5310 

and Atom D510 of all the workloads. We can find that the IPC 

values of Xeon E5310 is about 3-4 times larger than Atom D510, 

which means that the instruction execution speed of Xeon is 4 

times faster than D510. Both of these two platforms belong to 

X86 instruction set, and the total instruction numbers of every 

workload of them are similar. However, the DPS speedups of 

Xeon on Sort and other three relational queries are much lower 

than the IPC speedups. We show the CPU utilizations of all the 

workloads in Table 3. Generally speaking, the CPU utilization 

increases as data input size increases and the more stress is put 

on the system, and it gets stable at some data size. On the Xeon 

platform, the CPU utilizations of KMeans and Bayes are more 

than 90% at the stable point, and the CPU utilizations of 

Wordcount and Grep can reach 80%. However, for sort and 

three relational queries, the CPU utilizations are below 40% on 

the Xeon platform. On the Atom platform, the CPU utilizations 

are generally higher than Xeon, and most of them can reach 80% 

at the stable point, except Sort. Though the IPC values of Xeon 

are 4 times larger than that of Atom, the DPS speedups can not 

reach the same advantage for the workloads with lower CPU 

utilization. 

Figure 3. The Comparison of IPC between Xeon and Atom 

During the evaluation experiments, we try our best to tune the 

Hadoop running configurations to make every workload get the 

optimized performance. So the next question to answer is why 

the CPU utilizations of some workloads on Xeon are lower? All 

the workloads are executed based on the MapReduce framework, 

and the workload execution processing include two phases: map  

phase and reduce phase. The input data are partitioned into 

disjoint splits with the same data size, which will be processed 

through independent and paralleled map tasks. The output of 

map tasks are sorted and partitioned, then transmitted to 

different reduce tasks. The reduce task fetches data from all the 

map tasks through network, and it begins the aggregation 

function after all the map tasks are finished. The data input size 

of reduce size is not fixed, it is determined by the map output 

ratio and the partition mechanism. We analyze the CPU 

utilization through break downing the workloads into map and 

reduce phase, the data trends are mainly determined by 

workload characteristics, and they are similar of different input 

data sizes. So we display the corresponding results with input 

data size 32G in Table4. We can find that on the Xeon platform, 

the CPU utilization of map phase of every workload is much 

higher than that of reduce phase, and the map phase CPU 

utilization gap of every workload is larger than that of reduce 

phase. So there are two main facts inflecting the total CPU 

utilization of every workload: the CPU utilization of map phase 

and the time percentage of map phase. For Grep, Wordcount, 

Naive Bayes and KMeans, the map phase time percentage is 

more than 90%, and their map phase CPU utilizations are more 

than 90%. For the other four workloads, their map phase time 

percentage is below 60% and even lower. What's more, 

compared to other workloads, the map phase computation logics 

of Sort, Join, and Select are simpler, which contain string 

comparisons without integer or float calculations. So the map 

phase CPU utilization of them is lower, the lower map phase 

CPU utilization and lower map phase time percentage make the 

total CPU utilization even lower. There are no reduce phase in 

the Select workload, which only filters the input data according 

to the predicate without any algebraic calculation, and its CPU 

utilization in the map phase is much lower than other workloads. 

Table 3. CPU Utilization 

500MB 2GB 8GB 32GB 64GB 128GB 

Sort 
Xeon E5310 

Atom D510 

0.23 

0.43 

0.26 

0.66 

0.20 

0.50 

0.25 

0.50 

0.19 

0.32 

0.21 

0.33 

Grep 
Xeon E5310 

Atom D510 

0.15 

0.40 

0.87 

0.53 

0.58 

0.60 

0.72 

0.69 

0.83 

0.93 

0.82 

0 

Wordcount 
Xeon E5310 

Atom D510 

0.31 

0.60 

0.60 

0.83 

0.79 

0.93 

0.87 

0.94 

0.90 

0.96 

0.92 

0 

Navie 

Bayers 

Xeon E5310 

Atom D510 

0.48 

0.30 

0.95 

0.63 

0.97 

0.97 

0.98 

0.98 

0.99 

0.99 

0.99 

0 

KMeans 
Xeon E5310 

Atom D510 

0.30 

0.48 

0.65 

0.86 

0.83 

0.93 

0.92 

0.97 

0.92 

0.97 

0.95 

0 

Aggregation 
Xeon E5310 

Atom D510 

0.32 

0.59 

0.35 

0.66 

0.38 

0.74 

0.36 

0.73 

0.38 

0.72 

0.30 

0 

Join 
Xeon E5310 

Atom D510 

0.13 

0.17 

0.15 

0.20 

0.28 

0.43 

0.25 

0.44 

0.50 

0.78 

0.48 

0 

Select 
Xeon E5310 

Atom D510 

0.06 

0.16 

0.21 

0.39 

0.34 

0.78 

0.40 

0.83 

0.43 

0.84 

0.40 

0 

From the above analysis, we can conclude that the Xeon E5310 

shows performance advantage compared to the Atom D510, and 

the advantage gap are influenced by the workload characteristics: 

the calculation logic and time percentage of map and reduce 

phase. The workloads with simpler calculation and with bigger 

reduce phase time percentage can get less performance 

advantage on the brawny core. 

4.1.2 The Power Efficiency Comparison 
During our evaluation, the consumed power of Xeon E5310 is 

from 20W to 50W, and the consumed power of Atom D510 is 

from 3W to 8W. Generally speaking, the DPJ of Atom is higher
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Table 4. Workload Phase Breakdown 

Map Phase Reduce Phase 

Time 

Proportion 

CPU 

Utilization 

DPS Perf/Watt Time 

Proportion 

CPU 

Utilization 

DPS Perf/Watt 

Sort Xeon E5310 0.13 0.54 17.7 0.27 0.87 0.12 2.9 0.29 

Atom D510 0.23 0.91 8.7 0.88 0.77 0.30 2.6 0.57 

Grep Xeon E5310 0.80 0.72 16.7 0.45 0.20 0.30 8.1E-7 3.2E-8 

Atom D510 0.98 0.96 6.7 0.76 0.02 0.59 3.9E-7 5.1E-8 

Wordcount Xeon E5310 0.95 0.94 6.4 0.16 0.05 0.52 5.6 0.19 

Atom D510 0.94 0.98 2.2 0.30 0.06 0.57 2.03 0.32 

Navie Bayers Xeon E5310 0.99 0.98 0.27 0.007 0.01 0.45 0.01 0.0008 

Atom D510 0.99 0.97 0.06 0.007 0.01 0.46 0.007 0.0009 

KMeans Xeon E5310 0.98 0.96 4.9 0.22 0.02 0.38 0.0046 0.0002 

Atom D510 0.99 0.98 1.4 0.17 0.01 0.73 0.003 0.0004 

Aggregation Xeon E5310 0.42 0.85 16.6 0.45 0.58 0.39 1.73 0.06 

Atom D510 0.55 0.95 3.5 0.47 0.45 0.61 1.2 0.21 

Join Xeon E5310 0.61 0.62 9.6 0.29 0.39 0.49 8.5 0.29 

Atom D510 0.71 0.94 4.2 0.46 0.29 0.64 4.6 0.57 

Select Xeon E5310 1 0.51 16.6 0.51 0 0 0 0 

Atom D510 1 0.92 6.81 0.70 0 0 0 0 

than that of Xeon, and its power efficiency advantage differs in 

different workloads. For the eight workloads except Naive 

Bayes and KMeans, Atom presents 2-5 times more power 

efficient than Xeon. However, in the Naive Bayes and KMeans, 

the Atom advantage is not obvious. The average power of Xeon 

is about 4-5 times higher than Atom, however, the power 

advantage of Atom is diminished by the performance gaps on 

these two workloads. It implies that though the average power of 

Xeon on Naive Bayes and Kmeans is higher, it cost much less 

time, so the total energy is similar to Atom.  

From the comparison analysis of typical brawny core and 

wimpy core, we can draw two conclusions. First, the 

performance and energy efficiency of big data applications are 

not only determined by the processor architecture or hardware 

technology, but also associated with the application 

characteristics. Second, there is no ever-victorious core in terms 

of both performance and energy efficiency for all the big data 

workloads. We argue that a hybrid-core is an efficient way to 

improve the energy efficiency of big data systems with 

minimum performance degradation. 

4.2 Phase Breakdown Analysis 
Under the MapReduce framework, the workload execution 

processing include two phases: map phase and reduce phase. 

The input data are partitioned into disjoint splits with the same 

data size, which will be processed through independent and 

paralleled map tasks. The output of map tasks are sorted and 

partitioned, then transmitted to different reduce tasks. The 

reduce task fetches data from all the map tasks through network, 

and it begins the aggregation function after all the map tasks are 

finished. The data input size of reduce size is not fixed, it is 

determined by the map output ratio and the partition mechanism. 

We have shown the CPU utilization of map and reduce phase in 

Section 4.1, and in this subsection, we analyze the different 

characteristics of these two phases on all eight workloads. One 

thing to point out is that, during the former evaluations, we 

allow the reduce shuffle phase to begin before all the map tasks 

finish to optimize the performance. In this section, we forbid the 

shuffle phase to begin in advance in order to make the 

breakdown analysis more clear. 

From the results of Table4, two observations can be gotten. First, 

the CPU utilization of map phase is bigger than that of reduce 

phase for all the workloads on both Xeon E5310 and Atom 

D510. This gap is more obvious in the brawny core Xeon E5310. 

Secondly, for most of the workloads, the DPS of map phase is 

bigger than that of reduce phase on both two platforms. Thirdly, 

the DPS gap between Xeon E5310 and Atom D510 of the map 

phase is bigger that of reduce phase, and the DPJ gap is just 

opposite. Fourthly, given the hardware platform, the differences 

of both the CPU utilization and DPS of map phase on different 

workloads are bigger than reduce phase. 

We explain the observations from both the operation 

characteristics and instruction construction. The data processing 

characteristics of map phase and reduce phase are different from 

both data size and processing logics. The input data size of map 

phase is always greater or equal to that of reduce phase. For 

most big data analysis except sort, the map phase always filer 

the raw input data according to some predicate and the combine 

function of map phase further reduce the data transferred to 

reduce phase. The less input data size reduces the processing 

stress of reduce phase, which makes the CPU resource not fully 

utilized, especially in the brawny core. The data processing logic 

of map phase is more various and complex than the reduce 

phase. The input data of map phase is always the raw data, on 

which the map function can do more things, such as filer, sort, 

statistic computing, etc. While the data transferred to reduce 

phase is processed (key, value_list) pairs sorted by key, on 

which the main operation is always merge, combine, or cross 

product like join does. In order to further analyze the 

characteristics of the two phases, we investigate the widely 

accepted architectural metric MIPS ( Million Instructions Per 

Second ) of all the workloads, and show the results on Xeon 

5310 in Figure 4. The MIPS of map phase is 2 -9 times bigger 

than that of reduce, which implies that the instruction behaviors 

of map phase and reduce phase are very different. In general, the 

brawny core shows more performance advantage in the map 

phase, while in the reduce phase, its performance advantage is 

not so obvious. We argue that assigning the map and reduce 

tasks to different cores according to their characteristics will 

improve the power efficiency with minimum performance 

degradation using present technology. 
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Figure 4. MIPS of Different Workloads on Xeon E5310 

4.3 Preliminary Exploration of CPU Hybrid 
The hybrid mechanism can be implemented through different 

levels: system level, processor level and core level. Considering 

the data network transfer cost, assigning map task and reduce 

task to heterogeneous core requires processor-level or core-level 

hybrid. Both the hybrid mechanism and task scheduling need 

sophisticated techniques and models, which requires further 

research from architecture and database management. In this 

paper, we quantify the performance and power efficiency on 

hybrid system to conduct preliminary exploration. 

We have no existing brawny core and wimpy core hybrid 

platform on the CPU or core level, so we construct a hybrid 

platform as shown in Figure 5. The four slaves include two 

brawny-core nodes and two wimpy-core nodes. Brawny-core 

slaves are set to run map tasks, and wimpy-core slaves are set to 

run reduce tasks. This configuration will increase the data 

transfer cost between map and reduce tasks. In order to make the 

performance and efficiency comparison rational, we also make 

the map task and reduce task run on separated slaves on the 

Xeon E5310 cluster and Atom D510 cluster. 

Slave1

MapSlot1

MapSlot2

MapSlot3

MapSlot4

Xeon E5310

Xeon E5310

Master

Slave2

MapSlot1

MapSlot2

MapSlot3

MapSlot4

Xeon E5310

Slave3

ReduceSlot1

Atom D510

ReduceSlot2

ReduceSlot3

ReduceSlot4

Slave4

ReduceSlot1

Atom D510

ReduceSlot2

ReduceSlot3

ReduceSlot4

Figure 5. Hybrid Cluster Platform 

The hybrid cluster consists of heterogeneous processors, so 

during the comparison we adopt the performance and power 

efficiency of the whole cluster. Because of the page limit, we 

choose four representative workloads to show, which include 

Sort, Wordcount, Grep and Bayes on 32GB data. All the results 

are normalized to the Atom D510, illustrated in Figure 6 and 

Figure7. From the results, we can find that the hybrid 

mechanism can improve the power efficiency with less 

performance cost, however, the improve effects are different for 

different workloads. In general, we explore how the hybrid 

mechanism improve the power efficiency preliminarily, and give 

implications for the research work on the hybrid technique. How 

to realize the hybrid through different levels according to the 

workload characteristics requires more research work, which is 

also our future work.  

Figure 6. Energy Efficiency Comparison of Three Platforms 

Figure 7. Performance Comparison of Three Platforms 

5. RELATED WORK
As the proportion of energy cost in TCO remains increasing in 

data centers, more and more work is conducted on energy 

efficiency, and the arguments of existing work on wimpy or 

brawny cores can be categorized into three types. The first trend 

is to construct data centers based on low-powered wimpy cores 

with the aim of improving the energy efficiency of data 

processing[8-11]. In [8], the authors propose a cluster 

architecture called FAWN, which couples low-power, efficient 

embedded CPUs with flash storage to provide fast and cost-

effective data access in key-value stores. Vijay et al. 

demonstrate the energy efficiency of wimpy cores through 

evaluating web search on both server and mobile-class 

architectures, and they also quantify the price of efficiency of 

wimpy cores in terms of performance and quality-of-service[9]. 

Compared to construct the data centers with brawny cores and 

improve efficiency, they favor small, low power cores and 

propose some system-level and microarchitectural strategies to 

enhance their performance. The efficiency of wimpy servers in 

internet-scale services is evaluated in [10], and the authors make 

the point that low cost, low power servers can produce the same 

throughput as purpose-built servers at lower energy cost. In the 

field of DBMS, wimpy servers are also recommended to 

construct energy-proportional clusters, which aims to make the 

consumed energy proportional to the workloads, rather than 

consuming large fraction of peak consumption when idle[11].  

In contrast to the support voice for wimpy cores, there is also 

some work questioning the efficiency of using small cores in 

data centers [3,12,13]. In [12], the author analyzes the negative 

effect of switching to wimpy cores from additional software 

development cost, the suboptimal process scheduling and 

resource sharing of parallel subtasks, and the scale out limits of 

non-CPU cost. Willis et al. evaluate the performance scaleup of 

scaling out wimpy cores, and argue that the wimpy nodes 

exhibit disproportionate scaleup characteristics for 

computationally complex data query workloads[3]. The similar 

conclusions are reached in [13], which focuses on the analytic 
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workloads in Hadoop with job size less than 100GB. In general, 

the work holding negative attitude towards wimpy cores focuses 

on the computation-intensive workloads and places emphasis on 

the challenges and additional effort of scaling out wimpy cores.  

The design of mixing two kinds of cores from different levels is 

also proposed. In the chip-level, the heterogeneous asymmetric 

multicore processors (AMP) is proposed by architects, which 

integrates wimpy cores and brawny cores in one processor[14-

16]. In the server-level, [17] explores the performance and 

feasibility of the hybrid solution of platforms based on different 

cores. The hybrid solutions bring challenges and opportunities to 

the softwares, which have to be aware of the heterogeneity and 

fully exploit the potential of hybrid systems.  

Generally speaking, the workload analysis on different cores of 

existing work focuses on specific applications. To our best 

knowledge, there has been no work focusing on the performance 

and energy efficiency analysis on big data workload, which 

contains a wide spectrum of applications and unique 

characteristics. What's more, the evaluations and analyses of 

existing work is used to support the specific arguments or 

proposed solutions, they focus on different aspects of 

application level: performance, energy efficiency, price, etc. In 

this paper, we conduct quantitative comparisons of different 

processors in the domain of big data, which covers not only 

application-level analysis, but also architecture- and operating 

system-analysis. The evaluation results and implications of this 

paper will bring guidance for data center provisioning and 

design of both architecture and software, no matter wimpy cores, 

brawny cores, or hybrid solutions are favored.    
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