
Load Balancing for Skewed Streams on Heterogeneous Cluster
Muhammad Anis Uddin Nasir

$#
, Hiroshi Horii

$
, Marco Sera�ni

∗
, Nicolas Kourtellis

‡

Rudy Raymond
$
, Sarunas Girdzijauskas

#
, Takayuki Osogami

$
,

#
Royal Institute of Technology, Sweden

$
IBM Research Tokyo, Japan

∗
Qatar Computing Research Institute

‡
Telefonica Research

anisu@kth.se, horii@jp.ibm.com, msera�ni@qf.org.qa, nicolas.kourtellis@telefonica.com, rudyhar@jp.ibm.com

sarunasg@kth.se, osogami@jp.ibm.com

ABSTRACT

Primitive partitioning strategies for streaming applications operate

e�ciently under two very strict assumptions: the resources are

homogeneous and the messages are drawn from a uniform key dis-

tribution. These assumptions are often not true for the real-world

use cases. Dealing with heterogeneity and non-uniform workload

requires inferring the resource capacities and input distribution at

run time. However, gathering these statistics and �nding an optimal

placement often become a challenge when microsecond latency is

desired. In this paper, we address the load balancing problem for

streaming engines running on a heterogeneous cluster and process-

ing skewed workload. In doing so, we propose a novel partitioning

strategy called Consistent Grouping (cg) that is inspired by tradi-

tional consistent hashing. cg is a lightweight distributed strategy

that enables each processing element instance (pei) to process the

workload according to its capacity. The main idea behind cg is

the notion of equal-sized virtual workers at the sources, which are

assigned to workers based on their capacities. We provide a theo-

retical analysis of the proposed algorithm and show via extensive

empirical evaluation that the proposed scheme outperforms the

state-of-the-art approaches. In particular, cg achieves 3.44x supe-

rior performance in terms of latency compared to key grouping,

which is the state-of-the-art grouping strategy for stateful stream-

ing applications.

1 INTRODUCTION

Distributed stream processing engines (dspes) have recently gained

much attention due to their ability to process huge volumes of data

with very low latency on clusters of commodity hardware. dspes

enable processing information that is produced at a very fast rate

in a variety of contexts, such as IoT applications, software logs, and

social networks. For example, Twitter users generate more than

380 million tweets per day
1

and Facebook users upload more than

300 million photos per day
2
.

Streaming applications are represented by directed acyclic graphs

(dags), where vertices are called processing elements (pes) and rep-

resent operators, and edges are called streams and represent the

data �owing from one pe to the next. For scalability, streams are

partitioned into sub-streams and processed in parallel on replicas

of pes called processing element instances (pei).

Streaming applications perform light-weight operations such as

�ltering, aggregating, or joining, on the incoming data streams, to

1
http://www.internetlivestats.com/twitter-statistics/

2
http://www.businessinsider.com/facebook-350-million-photos-each-day-2013-9

Conference’17, Washington, DC, USA

2017. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

SoSource

Source

Worker
c1 = 8
u1=2/8

Worker
c2=4

u2=7/4

Worker
c3=4

u3=4/4

I(m) = 3/4

Figure 1: Example showing that key grouping generates imbalance

in the presence of a heterogeneous cluster. The capacity and the re-

source utilization of the i-th worker is represented by ci and ui re-
spectively. Each key (j ∈ K) is represented with di�erent color box.

Imbalance I (m) is the di�erence between the maximum and the av-

erage resource utilization (see section 3 for details).

analyze the information in real time. For example, a typical appli-

cation is the detection of trending hashtags in a stream of tweets.

In this case, the peis responsible for counting the occurrences of

the hashtags trending hashtags also receive a predominant share

of the messages in the stream. The same behavior can be observed

in other domains such as classi�cation (by grouping on classes and

attributes), statistical language models (grouping on words), and

streaming graph processing (grouping on vertices).

Applications of dspes, especially in data mining and machine

learning, typically require accumulating state across the stream by

grouping the data on common �elds [4, 5]. Akin to MapReduce,

this grouping in dspes is usually called key grouping (kg) and is

implemented using hashing [32]. kg allows each source pei to route

each message solely via its key, without needing to keep any state or

to coordinate among peis. However, kg is unaware of the underlying

skewness in the input streams [25], which causes a few peis to

sustain a signi�cantly higher load than others, as demonstrated in

Figure 1 with a toy example. This sub-optimal load balancing leads

to poor resource utilization and ine�ciency.

The problem is further complicated when the underlying re-

sources are heterogeneous [23, 38] or changing over time [42,

48]. For various commercial enterprises, the resources available

for stream mining consist of dedicated machines, private clouds,

bare metal, virtualized data centers and commodity hardware. For

streaming applications, the heterogeneity is often invisible to the

upstream peis and requires inferring the resource capacities in order

to generate a fair assignment of the tasks to the downstream peis.

However, gathering statistics and �nding optimal placement often

leads to bottlenecks, while at the same time microsecond latencies

are desired [19].

http://www.internetlivestats.com/twitter-statistics/
http://www.businessinsider.com/facebook-350-million-photos-each-day-2013-9

Alternatively, stateless streaming applications, like interaction

with external data sources, employ shu�e grouping (sg) to break

down the stream load equally to each of the peis, i.e., by sending

a message to a new pei in cyclic order, irrespective of its key. sg

allows each source pei to send equal number of messages to each

downstream pei, without the need to keep any state or to coordi-

nate among peis. However, similarly to kg, sg is unaware of the

heterogeneity in the cluster, which can cause some peis to sustain

unpredictably higher load than others. Further, sg typically requires

more memory to express stateful computations [32].

In this present work, we study the load balancing problem for

a streaming engine running on a heterogeneous cluster and pro-

cessing non-uniform workload. We envision a light-weight and

fair key grouping strategy for both stateless and stateful stream-

ing applications. Moreover, this strategy must limit the number of

workers processing each key, which is analogous to reducing the

memory footprint and aggregation cost for the stateful computa-

tion [32]. Towards this goal, we propose a novel grouping strategy

called Consistent Grouping (cg), which handles both the potential

skewness in input data distribution, as well as the heterogeneity in

resources in dspes. cg borrows the concept of virtual workers from

the traditional consistent hashing [13, 14] and employs rebalancing

to achieve fair assignment, similar to [3, 7, 12, 40, 42].

In summary, our work makes the following contributions:

• We study the load balancing problem for dspes running on

heterogeneous cluster and processing skewed workload.

• We propose a novel grouping scheme called Consistent Group-

ing that provides fair assignment of messages to downstream

operators by adapting to traditional consistent hashing.

• We provide a theoretical analysis of the proposed scheme and

show the e�ectiveness of the proposed scheme via extensive

empirical evaluation on synthetic and real-world datasets.

• We measure the impact of cg on a real deployment on Apache

Storm. Compared to key grouping, it improves the throughput

of an example application on real-world datasets by up to 2x,

reduces the latency by 3.44x.

2 OVERVIEW OF THE APPROACH

Consistent grouping relies on the concept of virtual workers and

allows variable number of virtual workers for each pei. The main

idea behind cg is to assign the input stream to the virtual workers

in a way that each virtual worker has almost the same number of

messages. Later, these virtual workers are assigned to the actual

workers
3

based on their capacity. The same idea has been consid-

ered in the past in the context of distributed hash tables [13, 14]. cg

allows an assignment of tasks to peis based on the capacity of the

peis. Thus, the powerful peis are assigned more work compared to

less powerful peis. The adaptation of cg in the streaming context

requires answering several challenging questions: 1) How do we

divide the messages into equal-sized virtual workers? , 2) How do

we identify the imbalance in load on workers due to heterogeneity

of their resources? and 3) How do we plan the migration?

First, we propose a novel strategy called power of random choices

(porc), which assigns the incoming messages to a set of equal sized

virtual workers. The basic idea behind this scheme is to introduce

3
We refer to downstream peis as workers and to upstream peis as sources throughout

the paper

Worker
c3=4

u3=4/4

Worker
c2=4

u2=3/4
Aggregator

SoSource

Source

Worker
c1 = 8
u1=6/8

I(m) = 1/6

Virtual
Worker

Periodic
Aggregation

Figure 2: Example showing that consistent grouping improves the

imbalance in the presence of heterogeneous cluster, compared to

key grouping. The capacity and the resource utilization of the i-th
worker is represented by ci and ui respectively. Also, the each key

(j ∈ K) is represented with di�erent color box. Imbalance I (m) is
the di�erence between the maximum and the average resource uti-

lization.

the notion of capacity for the virtual workers. In particular, we set

the capacity of each virtual worker to the ceiling of the average load

× (1+ϵ), for some parameter ϵ . Note that the capacity is calculated

at run time using the average load. Given in�nitely many hash func-

tions that produce �xed set of choices for a assignment of a message

to a virtual worker, porc maps a key to the �rst virtual worker with

a spare capacity. porc allows the heavy keys to spread across the

other virtual workers, thus reducing the memory footprint and the

aggregation cost. The ϵ parameter in the algorithm provides the

trade o� between the imbalance and memory footprint.

Second, cg takes a radically di�erent approach towards load

balancing and delegates the problem to the peis by allowing them

to decide their workload based on their capacities. We call this

component as worker delegation. Each worker monitors its work-

load and sends a binary signal (increase or decrease workload) to

the upstream operator(s) in case it experiences excessive workload.

This simple modi�cation changes the distributed load balancing

problem to a local decision problem, where each pei can choose its

share of workload based on its current capacity. Moreover, worker

delegation provides the �exibility to implement various application-

speci�c requirements at each pei. The upstream peis react to the

signals by moving virtual workers from one pei to another. Such de-

ployments might negatively impact the performance of a streaming

application, as it requires one-to-many broadcast messages across

the network. To overcome this challenge, we relax the consistency

constraint in the dag and allow operators to be eventually consis-

tent. Speci�cally, we propose piggybacking that allows encoding the

binary signals along with the acknowledgment message to avoid

the overhead.

Lastly, cg ensures that each message is processed in a consistent

manner by discarding the message migration phase. When the

upstream pei receives a request to change (increase or decrease) the

workload, cg relocates virtual workers assigned to the overloaded

worker, thus, only a�ecting the future routing of the messages.

Concretely, each worker processes the messages that are assigned

to it; changes in the routing only a�ect the messages that arrive

in a later time. cg follows the same programming primitive as

pkg for stream partitioning; supporting both stateless and stateful

map-reduce like applications [32]. We propose periodic aggregation

to support such operators, which leverages the existing dag and

imposes a very low-overhead in the stream application.

Figure 2 provides an example using cg for the dag in Figure

1. cg achieves the fair assignment of tasks by moving a virtual

worker from the low capacity worker to the high capacity worker.

Experiments show that cg outperforms other approaches in terms

of throughput and latency while providing signi�cant improvement

in terms of imbalance.

3 PRELIMINARIES & PROBLEM DEFINITION

This section introduces the preliminaries that are used in the rest

of the paper. We consider a dspe running on a cluster of machines

that communicate by exchanging messages following the �ow of a

dag. For scalability, streams are partitioned into sub-streams and

processed in parallel on a replica of the pe called processing element

instance (pei). Load balancing across the whole dag is achieved by

balancing along each edge independently. Each edge represents a

single stream of data, along with its partitioning scheme. Given a

stream under consideration, let the set of upstream peis (sources)

be S, and the set of downstream peis (workers) beW, and their

sizes be |S| = s and |W| = n.

Each machine w ∈ W has a limited capacity, which is repre-

sented by cw ∈ C. For simplicity, we assume that there is a single

important resource on which nodes are constrained, such as storage,

processing. Moreover, each worker (w ∈ W) has an unbounded

input queue (Qw).

The input to the engine is a sequence of messages z = 〈i, j,v, t〉
where i is the identi�er, j ∈ K , |K | = m is the message key, v is

the value, and t is the timestamp at which the message is received.

The messages are presented to the engine in ascending order by

timestamp. Upon receiving a message with key j ∈ K , we need to

decide its placement among the workers. We assume one message

arrives per unit of time.

We employ queuing theory as the cost model to de�ne the de-

lay and the overhead at each worker. In the model, a sequence of

messages arrives at a worker w ∈ W. If the new message �nds the

worker occupied, it waits in the queue until its turn to be served

comes. After the message is processed, it leaves the system. We

represent the �nish time for a message i using ϕi . The di�erence

between the arrival time and the ϕi represents the message execute

latency.

We de�ne a partitioning function H : K → W, which maps

each message of one of the peis. This number identi�es the pei

responsible for processing the message. Each pei is associated to one

or more keys. The goal of the partitioning function is to generate an

assignment of messages to the set of workers in a way that average

waiting time is minimized.

In this paper, we focus on providing a generalized framework

for load balancing that is capable for adapting to any de�nition of

load imbalance. We de�ne the queue length of a worker using the

number of messages that are pending in the queue. At time t , the

queue length of a worker w is de�ned by:

Lw (t) = |{i : H = w ∧ ϕi > t}|, for w ∈ W

Also, we de�ne utilization at time t as ratio between the queue

length and the capacity of the worker.

Uw (t) =
Lw (t)
cw

We use a de�nition of imbalance similar to others in the literature

(e.g., Flux [40] and pkg [32]). We de�ne imbalance at time t as

P(C | X) = ∏

P(x1 | C)

P(x2 | C)

P(xn | C)

Stream

X �
x1 x2 … xn

X �
x1 x2 … xn

Figure 3: Naïve Bayes implemented via key grouping (kg).

the di�erence between the maximum and the average resource

utilization:

I (t) = max

w
{Uw (t)} − avg

w
{Uw (t)}, w ∈ W.

Problem. Given the de�nition of imbalance, we consider the fol-

lowing problem in this paper.

Problem 3.1. Given a stream of messages drawn from a heavy-

tailed distribution K and and set of workersw ∈ W with capacities

cw ∈ C, �nd a partitioning functionH that minimizes the imbalance

(I (t)) at any time instance t .

Memory Cost. One simple solution to address problem 3 is to

employ round robin assignment, which provides an imbalance of

at most one. This load balance comes at the cost of memory as

message with the same key might end up on all the workers. In our

work, we would like to bound the memory by limiting the number

of workers processing each key.

Example. To make the discussion more concrete, we introduce

a simple application that will be our running example: the naïve

Bayes classi�er. A naïve Bayes classi�er is a probabilistic model that

assumes independence of features in the data (hence the naïve). It

estimates the probability of a class C given a feature vector X by

using Bayes’ theorem:

P(C |X) = P(X |C)P(C)
P(X) .

The answer given by the classi�er is then the class with maximum

likelihood

C∗ = argmax

C
P(C |X).

Given that features are assumed independent, the joint probability

of the features is the product of the probability of each feature. Also,

we are only interested in the class that maximizes the likelihood,

so we can omit P(X) from the maximization as it is constant. The

class probability is proportional to the product

P(C |X) ∝
∏
xi ∈X

P(xi |C)P(C),

which reduces the problem to estimating the probability of each

feature value xi given a class C , and a prior for each class C .

In practice, the classi�er estimates the probabilities by counting

the frequency of co-occurrence of each feature and class value.

Therefore, it can be implemented by a set of counters, one for each

pair of feature value and class value. A MapReduce implementation

is straightforward, and available in Apache Mahout.
4

4
https://mahout.apache.org/users/classi�cation/bayesian.html

https://mahout.apache.org/users/classification/bayesian.html

4 BACKGROUND

In this section, we provide the brief summary of the state-of-the-art

streaming solutions and discuss other possible solutions for our

problem.

4.1 Existing Stream Partitioning Functions

Messages are sent between pes by exchanging messages over the

network. Several primitives are o�ered by dspes for sources to

partition the stream, i.e., to route messages to di�erent workers.

There are three main primitives of interest: key grouping, partial

key grouping and shu�e grouping.

Key Grouping (kg). kg partitioning ensures the messages with

the same key are handled by the same pei (analogous to MapRe-

duce). It is usually implemented through hashing. kg is the perfect

choice for stateful operators. It allows each source pei to route each

message solely via its key, without needing to keep any state or to

coordinate among peis. However, kg is unaware of the underlying

skewness in the input distribution, which causes a few peis to sus-

tain a signi�cantly higher load than others. This sub optimal load

balancing leads to poor resource utilization and ine�ciency.

Partial Key Grouping (pkg). pkg [31–33] adapts to the tradi-

tional power of two choices for load balancing in map-reduce like

streaming operators. pkg guarantees nearly perfect load balance

in the presence of skew using two novel schemes: key splitting

and local load estimation. The local load estimation enables each

upstream pei to predict the load of downstream peis leveraging the

past history. However, similar to kg, pkg assumes that each down-

stream pei has same resources and the service time for the messages

follows a uniform distribution, which is a strong assumption of

many real-world use cases.

Shu�le Grouping (sg). sg partitioning forwards messages inde-

pendently, typically in a round-robin fashion. It provides excellent

load balance by assigning an almost equal number of messages to

each pei. However, no guarantee is made on the partitioning of

the key space, as each occurrence of a key can be assigned to any

peis. It is the perfect choice for stateless operators. However, with

stateful operators one has to handle, store and aggregate multiple

partial results for the same key, thus incurring additional costs.

4.2 Consistent Hashing.

Consistent Hashing (ch) is a special form of a hash function that

requires minimal changes as the range of the function changes[21].

ch solves the assignment problem by substantially producing a ran-

dom allocation. It relies on a standard hash function that maps both

messages and workers unit-size circular ID space, i.e., [0, 1) ⊆ R.

Further, each task is assigned to the �rst worker that is encountered

moving in the clockwise direction on the unit circle. For implemen-

tation, the hash value for all the workers are stored in a binary

search tree, and the clockwise successor can be found via single

search. ch provides load balancing guarantees across the set of

workers. Given that the load on a node is proportional to the size

of the interval it owns, no worker owns more than O

(
logn
n

)
of the

interval (to which each task is mapped) [21].

One common solution to improve the load balance is to introduce

virtual workers, which are copies of workers points in the circle.

Whenever, a new worker is added, a �xed number of copies of the

worker are also created in the circle. As each worker is responsible

for an interval on the unit circle, creating virtual copies of a worker

spread the workload for each worker across the unit circle. Thus,

virtual workers enables ch to achieve better load balancing across

the set of workers. Similar to other stream partitioning functions,

ch is unaware of both the heterogeneity in the cluster and skewness

in the input stream, which restricts its immediate applicability in

the streaming context.

Hash Space Adjustment. One possible solution to deal both het-

erogeniety and skewness is to employ hash space adjustment for

consistent hashing [18]. Such schemes require global knowledge of

the tasks assignment to each worker to adjust the hash space for

the workers, i.e., movement of tasks from the overloaded worker

to the least loaded worker. Even though such schemes provide e�-

cient results in terms of load balance, their applicability in stream

context incurs an additional overhead due to many-to-many com-

munication across workers. Also, if implemented without global

information, these scheme may produce unpredictable imbalance

due to random task movement across workers.

ConsistentHashingwith Bounded Load. Independent from our

work, Mirrokni et al. [28] proposed a novel version of consistent

hashing scheme that provides a constant bound of the load of the

maximum loaded worker. The basic idea behind their scheme is to

introduce the notion of capacity for each worker. In particular, set

the capacity of each bin to either �oor or ceiling of the average load

times (1+ϵ), for some parameter ϵ . Further, the tasks are assigned

to a worker in the clockwise direction with spare capacity. ch

guarantees that the load of the maximum loaded bin is at most

(1+ϵ) factor of the average load.

4.3 Other Approaches

Power of a Two Choice (potc). potc enables achieving the load

balance by �rst selecting two bins uniformly at random and later

assigning the message to the least loaded of the two bins. For potc,

the load of each bin solely based on the number of messages. Using

potc, each key might be assigned to any of the workers. There-

fore, the memory requirement in worst case is proportional to the

number of workers, i.e., every key appearing on all the workers.

Greedy Scheduling. Sparrow [34] is a stateless distributed job

scheduler that exploits a variant of the power of two choices [35].

It employs batch probing, along with late binding, to assign m
messages of a job to the least loaded of d ×m randomly selected

workers (d ≥ 1). The applicability of such schemes in the context

of streaming is not clear as both probing and late binding can

signi�cantly a�ect the latency per message.

Rebalancing. Another way to achieve fair assignment is to lever-

age rebalancing [3, 7, 11, 40, 42]. Once a situation of load imbalance

is detected, the system activates a rebalancing routine that moves

part of the messages, and the state associated with them, away

from an overloaded worker. While this solution is easy to under-

stand, it applicability in the streaming context requires answering

several challenging questions: How to identify the imbalance and

how to plan the migration. The answer to these questions are often

application-speci�c as they involve a trade-o� between imbalance

and rebalancing cost that depends on the size of the state to mi-

grate. For these reasons, rebalancing creates a di�cult engineering

challenge, which we address in our paper.

5 SOLUTION

In this section, we discuss our solution and its various components.

Given the set of sources and the set of workers, the goal is to design

a grouping strategy that is capable of assigning the messages to the

workers proportional to their capacity.

Overview. In our work, we propose a novel grouping scheme

called consistent grouping (cg). Our scheme borrows the concept

of virtual workers from the traditional consistent hashing [13, 14]

and employs rebalancing to achieve fair assignment, similar to

[3, 7, 12, 40, 42]. cg allows variable number of virtual workers for

each pei. The main idea behind cg is to assign the input stream to

the virtual workers in a way that each virtual worker has almost the

same number of messages. Later, these virtual workers are assigned

to the workers based on their capacity. One of the challenges is to

bound the load of each virtual worker as it implies that moving a

virtual from one worker to another actually increases and decreases

the workload of corresponding worker. In doing so, we propose

a novel grouping strategy called power of random choices that is

capable of providing bounded imbalance while keeping the mem-

ory cost low. Further, we propose three e�cient schemes: worker

delegation, piggybacking and periodic aggregation, which enable

e�cient integration of our proposed scheme into dspes.

5.1 Power of Random Choices

In this section, we propose a novel grouping strategy called power

of both choices (porc). porc is a hybrid scheme between potc and

pkg. It assigns the incoming messages to the set of virtual workers

in a way that the imbalance is bounded and the overall memory

footprint of the keys on the virtual workers is low. The basic idea

behind this scheme is to introduce the notion of capacity for each

virtual worker. In particular, we set the capacity of each virtual

worker to the ceiling of the average load times (1+ϵ), for some

parameter ϵ . Note that the de�nition of capacity is based on the

average load, rather than a hard constraint. Given in�nitely many

hash functionsH1,H2, . . . that produce �xed set of choices for a

assignment of a message to a virtual worker, the algorithm maps a

key to the �rst virtual worker with the spare capacity. The in�nitely

many choices for a key can be produced by using a single hash

function and concatenating the salt in the key to produce a new

assignment
5
. We refer to the virtual worker produced by the �rst

hash functionH1 as the principal virtual worker. The rational behind

this approach is that the heavy keys in the skewed input distribution

overload their principal worker. Therefore, we allow the heavy

keys to spread across the other virtual workers, which reduces the

memory footprint compared to other schemes, e.g., round robin.

The ϵ parameter in the algorithm provides the trade o� between the

imbalance and memory footprint. porc provides an e�cient and

generalized solution for the fundamental problem of load balancing

for the skewed stream in streaming settings while minimizing the

memory footprint [32, 33]. In our work, we adapt porc for fair load

balancing for streaming applications, which shows its e�ectiveness

and applicability.

Discussion. To show the e�ectiveness of porc, we compare its

performance with kg, pkg, potc, sg, and ch in terms of imbalance

and memory footprint (see section 4 for the description of other

schemes) . We leverage the zipf dataset with di�erent skews for

this experiment (see section 7 for the description of the dataset).

5
https://datarus.wordpress.com/2015/05/04/�ghting-the-skew-in-spark/

10
-3

10
-2

10
-1

10
0

10
1

 0.5 1 1.5 2

Im
b
a
la

n
c
e
(#

m
e
s
s
a
g
e
s
)

I(
t)

skew (z)

10 virtual workers

KG PKG PoTC SG PoRC CH

10
-2

10
-1

10
0

10
1

10
2

 0.5 1 1.5 2

skew (z)

100 virtual workers

10
-1

10
0

10
1

10
2

10
3

 0.5 1 1.5 2

skew (z)

1000 virtual workers

10
-2

10
-1

10
0

 0.5 1 1.5 2

m
e
m

o
ry

(#
m

e
s
s
a
g
e
s
)

I(
t)

skew (z)

10 virtual workers

10
-2

10
-1

10
0

 0.5 1 1.5 2

skew (z)

100 virtual workers

10
-2

10
-1

10
0

 0.5 1 1.5 2

skew (z)

1000 virtual workers

Figure 4: Experiment reporting the normalized imbalance and the

memory overhead for Hashing (H), Partial Key Grouping (PKG),

Power of Two Choices (PoTC), Power of a Random Choices (PoRC),

Consistent Hashing (CH) and Shu�le Grouping (SG) for zipf distri-

bution with di�erent skew and number of virtual workers.

Table 1: Normalized imbalance when varying the number of virtual

workers for the Wikipedia (WP) and Twitter (TW) datasets. We set

the value of ϵ = 0.3 for potc and ch.

Dataset WP TW

W 10
1

10
2

10
3

10
4

10
1

10
2

10
3

10
4

kg 0.8 9.15 93 931 2.2 25 246 2469

pkg 8e-7 3.67 45.59 464 1.52 11.34 22 1233

potc 8e-7 8e-6 9e-5 1e-3 9.5e-8 2e-6 2e-5 3e-4

sg 4e-7 3e-6 4e-6 2.8e-4 0 2e-7 6e-6 4e-5

porc 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
ch 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Figure 4 reports the imbalance for di�erent schemes for di�erent

number of virtual workers, i.e., 10, 100, and 1000. Results show that

both hashing and partial key grouping generate high imbalance as

the skew and the number of virtual workers increase. However, the

other schemes perform fairly well in terms of imbalance. Similarly,

Table 1 shows the imbalance for the Wikipedia and Twitter dataset

when varying the number of virtual workers. Additionally, we

report the memory overhead for all the schemes in Figure 4. The

memory cost is calculated using the total number of unique keys

that appear at each virtual worker. Results verify our claim that

load balance is achieved at the cost of memory.

5.2 Consistent Grouping

We propose a novel grouping strategy called Consistent Grouping

(cg) that is inspired by consistent hashing. cg borrows the concept

of virtual workers from traditional consistent hashing and allows

variable number of virtual workers for each pei [13, 14]. It is a

dynamic grouping strategy that is capable of handling both the het-

erogeneity in the resources and the variability in the input stream

at runtime. cg achieves its goal by allowing the powerful workers

to acquire additional virtual workers, which leads to stealing work

from the other workers. Moreover, it allows overloaded workers

to gracefully revoke some of its existing virtual workers, which is

equivalent to giving up on some of the allocated work.

cg is a lightweight and distributed scheme that allows assign-

ment of messages to the workers in a streaming fashion. Moreover,

it leverages porc for assignment of keys to each virtual worker

in a balanced manner, which allows it to bound the load of each

virtual worker. cg is able to balance the load across workers based

on their capacities, which allows the dspes to operate under adverse

scenarios like, heterogeneous clusters and variable workloads.

Time Slot. Before moving the discussion further, we introduce the

notion of time slot (t0), which represents the minimum monitoring

time period for a peis. to is an administrative preference that can

be determined based on workload tra�c patterns. If workloads are

expected to change on an hourly basis, setting t0 on the order of

minutes will typically su�ce. For slower changing workloads t0
can be set to an hour. Time slot guarantees that downstream peis

have enough sample of the input stream to predict its workload.

5.2.1 Load Reduction. Similar to consistent hashing, cg initial-

izes with the same number of virtual workers for each worker, i.e.,

O (logn). cg manages a unit-size circular ID space, i.e., [0, 1) ⊆ R
and maps the virtual workers and keys on the unit-size ID space.

The main idea is to assign lower number of virtual workers for

low capacity workers and higher number of virtual workers for

high capacity workers. However, it is not clear how cg can reassign

the keys or move the virtual workers ensuring that the load of

each worker is proportional to its capacity. Ideally, we would like

a scheme that is capable of monitoring the load at each worker

throughout the lifetime of a streaming application and adjust the

load according to the available capacity of the workers. In doing so,

we introduce a novel scheme called pairing virtual workers:

Pairing virtual workers. The load of a worker equals the sum

of load of the assigned virtual workers. Further, the load of each

virtual worker equals to the load that is induced by the mapped

messages. Ideally, we would like to assign one of the virtual workers

from the overloaded worker to one of the idle workers. However,

it is not trivial until this point on how one can achieve such an

assignment. To enable such an assignment, we propose to maintain

two FCFS queue: idle and busy. These queues maintain the list

of idle and busy workers in the dspe and allow cg to pair any

removal and addition with the opposite to keep the number of

virtual workers same throughout the execution. For instance, when

a worker is overloaded, it sends a message to upstream operator.

Further, the upstream operator only removes the virtual workers of

the corresponding worker if it is able to pair it with an addition on

another idle worker. This simple scheme ensures that the number

of virtual workers in the system are same throughout the execution

and the load of each virtual worker is bounded, which enables cg

to perform fair assignment. Note that mapping the virtual workers

with similar keys to the same worker might reduce the memory

footprint. However, this requires maintaining all the unique keys in

each virtual worker and each workers. Therefore, we opt for FCFS

mapping of virtual workers to workers.

5.3 Integration in a dspe

While consistent grouping is easy to understand, its applicability

is case of a real world stream processing engines is not clear. In

particular, we need to answer two questions: 1) How to identify the

imbalance (what are the metrics for imbalance) and 2) how to plan

the migration (how to keep ownership of the work). To answer

these questions, we package cg with few e�cient strategies that

enable its applicability in variety of dspes.

Worker Delegation. We answer the �rst question by proposing

an e�cient scheme called worker delegation. This scheme pushes

the load balancing problem to the downstream operators and allows

them to decide their workload based on their capacity. Each pei

requires monitoring its workload and needs to take the decision

based on their current workload and the available capacity. The

decision can either be to increase the workload or to decrease the

workload. The intuition behind this approach is that it is often the

case that the cluster consists of a large number of workers and

collecting the statistics periodically from the workers creates an

additional overhead for streaming application.

The worker delegation scheme allows the downstream peis to

interact with upstream peis by sending binary signals: (1) increase

the workload and (2) decrease the workload. Each worker monitors

its workload and tries to bound the workload under some threshold,

i.e., if the workload exceeds the threshold, the worker sends a

decrease signal to upstream operators and if the workload is below

the threshold the worker sends the increase signal to the upstream

operators. This simple modi�cation comes along with the bene�t

that it gives the �exibility to the workers to easily adapt to the

complex application-speci�c requirements, i.e., processing, storage,

service time and queue length.

Piggybacking. Each downstream pei requires updating all the up-

stream peis in case of experiencing undesirable workload. Such

deployments might negatively impact the performance of a stream-

ing application, as it will require one-to-many broadcast messages

across the network. To overcome this challenge, we propose to relax

the consistency constraint in the dag and allow operators to be

eventually consistent. We propose to encode the binary signals from

the downstream peis along with the acknowledgement messages.

During the execution, the upstream operators only receive the sig-

nal from the downstream operator as a response to its messages.

This means that pei might continue receiving the messages with

the same key even after triggering the decision.

Periodic Aggregation. When the upstream pei receives a request

to increase the workload, it moves one of the virtual worker from the

overloaded worker to a idle worker. During the change of routing,

we need to ensure that the messages that are pending in the queue

of the workers must be processed in a consistent manner.

cg ensures that each message is processed in a consistent manner

by discarding the message migration phase. Concretely, each worker

processes the messages that are assigned to it and any change in

the routing only a�ect the messages that arrive in later time.

As a message with the same key might be forwarded to di�erent

peis, cg performs periodic aggregation of partial results from the

downstream operators to ensure that the state per key is consistent.

Periodic aggregation leverages the same dag (as shown in Figure

2) and imposes a very low-overhead in the stream application.

Particularly, cg follows the same programming primitive as pkg

for stream partitioning; supporting both stateless and stateful map-

reduce like applications.

6 ANALYSIS

We proceed to analyze the conditions under which cg achieves

good load balance. Recall from Section 3 that we have a setW
of n workers at our disposal. Each machine w ∈ W has a limited

capacity, which is represented by cw ∈ C. Capacities are normalized

so that the average capacity is
1

n ; that is

∑
w ∈W cw = 1. We assume

them ordered by decreasing capacities, i.e., c1 ≥ c2 ≥ c3 . . . ≥ cn .

For simplicity, we assume that there is a single important resource

on which workers are constrained, such as storage, and processing.

Moreover, each worker (w ∈ W) has an unbounded input queue

(Qw).

The input to the engine is a sequence of messages z = 〈i, j,v, t〉
where i is the identi�er, j ∈ K , |K | = m is the message key, v is

the value, and t is the timestamp at which the message is received.

Upon receiving a message with value j ∈ K , we need to decide its

placement among the workers. We assume one message arrives per

unit of time. The message arrive in ascending order by timestamp.

Key distribution. We assume the existence of an underlying dis-

crete distribution D supported on K from which keys are drawn,

i.e., k1, . . . ,km is a sequence of m independent samples from D
(m � n). Without loss of generality, we identify the set K of

keys with N+ or, if K is �nite of cardinality m = |K |, with [m] =
{1, . . . ,m}. We represent the average arrival rate of messages as pj .
We assume them ordered by decreasing average arrival rate: if pj is

the probability of drawing key j from D, then p1 ≥ p2 . . .pm and∑
j ∈K pj = 1. We model the load distribution as a zipf distribution

with values of z between 0 and 2.0. The pdf of the zipf distribution

with skew z, rank of each key r and total number of elementsm is:

f (r ,m, z) = 1/rz∑m
x=1(1/xz)

.

Supermarket Model. We employ queuing theory to study the

problem and model the problem leveraging the supermarket model

[29]. In this model, a sequence of messages arrives at a worker

w ∈ W. We model the arrivals of messages using a zipf distribution.

Further, the service time required for each messages is �xed and

deterministic. Each tuple is assigned to one of the n workers for

processing. If the new tuple �nds the worker occupied, it waits

in the queue until its turn to be served comes. After the tuple is

processed, it leaves the system.

Our goal is to design an algorithm to solve the Problem 3. Before

starting the discussion on cg, assume that t0 represents the time

slot which corresponds to the minimum time period that each

worker waits after sending a signal to the upstream peis. Also, as

we are not considering elasticity, we assume that the system is well

provisioned, i.e.,

∑
j∈K pj∑

w∈W cw
< 1

6.1 Imbalance with Consistent Grouping

For simpli�cation, we divide the analysis of cg into two parts: di-

viding the workload into small equal-sized virtual workers and

assigning the virtual workers to workers based on their capacities.

Assume that α > 1 represents the number of virtual workers as-

signed to each worker at initial time. Then, for n heterogeneous

workers, we have α × n homogeneous virtual workers. Each vir-

tual worker has the same capacity (hence, homogeneous) and the

capacity is guaranteed to be at most the capacity of the worker

with the lowest capacity. The sources (which distribute keys to

virtual workers) do not know the capacity of each worker. But,

since all virtual workers are homogeneous, the sources can balance

the loads of each worker by assigning equal number of messages to

each virtual worker, and by keeping the number of virtual workers

assigned to each worker is proportional to its capacity.

6.1.1 Chromatic Balls and Bins. We model the �rst problem in

the framework of balls and bins processes, where keys correspond

to colors, messages to colored balls, and virtual workers to bins.

Choose d independent hash functions H1, . . . ,Hd : K → [αn]
uniformly at random. De�ne the greedy-d scheme as follows: at

time t , the t-th ball (whose color is kt) is placed on the bin with

minimum current load among H1(kt), . . . ,Hd (kt), i.e., Pt (kt) =
argmini ∈{H1(kt), ...,Hd (kt)} Li (t).

Observe that when d = 1, each ball color is assigned to a unique

bin so no choice has to be made; this models hash-based key group-

ing. At the other extreme, when d � n lnn, all n bins are valid

choices, and we obtain shu�e grouping.

Note that in case of shu�e grouping, balls with same color might

be assigned to di�erent workers. Such an assignment requires extra

memory to gather partial states and requires an additional aggregate

phase in case of stateful operators, e.g., aggregate, max, min. We

express this behavior in terms of memory and aggregation cost.

Further, observe that in case of key grouping, each ball is assigned

to a single worker. Therefore, key grouping does not require any

additional memory and the aggregation phase.

Next, we analyze pkg [32]. When using the pkg, we have d =
2, which is same as having two hash functions H1(j) and H2(j).
The algorithm maps each key to the sub-stream assigned to the

least loaded worker between the two possible choices, that is:

Pt (j) = argmini (Li (t) : H1(j) = i ∨H2(j) = i).

Lemma 6.1. Suppose we use n bins and let m ≥ n2. Assume a

key distribution D with maximum probability p1 ≤ 1

5n . Then, the

imbalance afterm steps of the Greedy-d process is O

(
ln lnn
lnd

)
, with

high probability [32].

Observe that the imbalance in case of pkg is only guaranteed

for the case when p1 ≤ 1

5n . However, in the case when p1 >
1

5n ,

the imbalance grows proportional with the frequency of the most

frequent key and number of workers.

Next, we analyze PowerOf TwoChoices, which was introduced

by Azar et al. [2]. When using the potc, we have two random

numbers R1(m) and R2(m). The algorithm maps each messagem
to the sub-stream assigned to the least loaded worker between

the two possible choices, that is: Pt (k) = argmini (Li (t) : R1(m) =
i ∨ R2(m) = i). The above random numbers can be generated by

using hash functions with messages as arguments. In this case, note

that the potc is di�erent from the pkg in the sense that two hashes

are applied to the messages, rather than the keys. The procedure

is identical to the standard greedy-d process of Azar et al. [2],

therefore the following bounds hold.

Lemma 6.2. Suppose we use n bins and let m ≥ n2. Then, the

imbalance afterm steps of the Greedy-d process is O

(
ln lnn
lnd

)
, with

high probability [2].

Note that these bounds can be generalized to the in�nite process

in which n balls leave the system in each time unit (one from each

worker) and the number of balls entering the system are less than

n. In such cases, the relative load remains the same, therefore the

bound holds. Both ch [28] and porc generate imbalance that is

bounded by the factor ϵ , i.e., I (m) ≤ ϵ · (mn).

6.1.2 Fair Bin Assignment. Given thatm messages are assigned

to set of n workers using porc, our goal is to show that consistent

grouping is able to perform fair assignment to messages to the

workers over time. We achieve our goal by showing that consistent

grouping reduces the imbalance I (t) (if it exists) over time. To make

the discussion more concrete, we de�ne the notion of busy worker

using a threshold θb > 1. In particular, we say that a worker w is

busy if the load Lw ≥ θb · cw . Similarly, we de�ne the notion of

idle worker using the threshold θi < 1. We say that a worker w is

idle if its load Lw ≤ θi · cw .

Assume that α represents the average number of virtual workers

per worker, i.e., the total number of virtual workers equal α × n.

Also, assume that α∗w represents the optimal number of virtual

workers for w-th worker, namely, α∗w = cwnα . Clearly,
θi ·cw
α ∗w

≤
1

n .α ≤
θb ·cw
α ∗w

.

Thanks to the load balancing mechanisms, such as, pkg or potc,

each virtual bin is guaranteed to have load at most 1/(αn) + γ with

high probability, where γ denotes the imbalance factor of the load

balancing mechanism used. For pkg and potc, the value of γ is at

most (ln lnαn/(m lnd)) as implied by by Lemma 6.1 and 6.2 (notice

that the denominator m is due to the normalization of the capacity

in this paper). Therefore, the expected load of a worker w having

αw virtual workers is bounded above by

E[Lw] ≤ αw · (
1

nα
+ γ)

Now, consider that the worker w is overloaded, i.e., E[Lw] ≥
θb · cw . This implies:

αw · (
1

nα
+ γ) ≥ θb · cw

We can rearrange the above equation to have:

γ ≥ θb · cw
αw

− 1

nα
,

which implies that when the worker is overloaded, it must have an

imbalance that is lower bounded by the above equation. However,

such an imbalance is guaranteed to be small ϵ by the load balancing

mechanism used, i.e., ϵ ≤ (ln lnαn/(m lnd)) � 1/(αn) for potc

and pkg whenm ≥ n2.

Therefore, we know that for an overloaded worker, it must hold

that:

ϵ ≥ γ ≥ θb · cw
αw

− 1

nα

Now, by solving for αw , we get:

αw ≥
θb · cw
1

nα + ϵ
≥ θb · cwnα(1 − ϵnα),

where we use the Bernoulli’s inequality (1 + ϵnα)−1 ≥ (1 − ϵnα) to

obtain the above second inequality.

Notice that the above inequality gives the lower bound on the

number of virtual workers assigned to an overloaded worker. Since

its optimal number of virtual workers is α∗w = cwnα , we can see

that αw /α∗w ≥ θb (1 − ϵnα), which is close to 1 since ϵ � 1/(αn).
This gives an interesting property that once we know a worker is

overloaded, we can be sure that its number of virtual workers is

close to the optimal allocation. Thus, the upstream operators can

probe the capacity of workers by assigning virtual workers (taken

from overloaded workers) to workers that have not reported be-

coming overloaded, or if there is no such one, to those that reported

becoming overloaded least recently. Also notice that by letting

θb = (1 + ϵnα), we can guarantee that the overloaded workers are

having at least the optimal number of virtual workers they shoud

have. However, when ϵ is large (due to bad load balancing mech-

anisms), or when αn is large (due to having many small virtual

workers), θb > 1 will become large. This will burden the over-

loaded workers because they can only broadcast the overloaded

cases when the threshold θb · cw is surpassed. This illustrates the

tradeo� of load balancing mechanisms, with small imbalance factor

ϵ , and the right number of virtual workers (too many is not good)

in our consistent grouping strategy.

6.2 Memory with Consistent grouping

kg generates the optimal memory footprint by forwarding each

key to exactly one worker. Similarly, pkg produces nearly optimal

memory overhead by allowing at most two workers per key. On the

other end, potc and sg might assign each key to all the workers in

the worst case producing the memory footprint proportional to the

number of workers. porc allows a trade o� between imbalance and

memory using the parameter ϵ . To analyze the memory footprint of

porc, we answer a very simple question: What is the probability that

a key is replicated on all the workers? For this to happen, the load of

n−1 workers should exceed by (1+ϵ) of the average load. Only then

a key is replicated on all the workers. However, for a su�ciently

large value of ϵ , i.e., ϵ > 1

n−1 this can not happen. This provides the

basic intuition on why the memory overhead of porc is lower than

sg and potc. However, we plan to consider the detailed analysis in

future work.

7 EVALUATION

We assess the performance of our proposal by using both simula-

tions and a real deployment. In so doing, we answer the following

questions:

Q1: How to tune the parameters for cg?

Q2: How does cg perform compared to other schemes?

Q3: How does cg adapt to changes in input stream and resources?

Q4: What is the overall e�ect of cg on applications deployed on a

real dspe?

7.1 Experimental Setup

Datasets. Table 2 summarizes the datasets used. In particular, our

goal is to be able to produce the skewness in the input stream. We

use two main real data streams, one from Wikipedia and one from

Twitter. These datasets were chosen for their large size, di�erent

degree of skewness, and di�erent set of applications in Web and

online social network domains. The Wikipedia dataset (WP)
6

is a

log of the pages visited during a day in January 2008. Each visit is a

message and the page’s URL represents its key. The Twitter dataset

(TW) is a sample of tweets crawled during July 2012. We split

each tweet into words, which are used as the key for the message.

Lastly, we generate synthetic datasets with keys following Zipf

distributions with exponent in the range z = {0.1, . . . , 2.0} and for

di�erent number of unique keys K = 100k .

Simulation and Real Deployment. We process the datasets by

simulating the dag presented in Figure 3. The stream is composed

of timestamped keys that are read by multiple independent sources

6
http://www.wikibench.eu/?page_id=60

http://www.wikibench.eu/?page_id=60

Table 2: Summary of the datasets used in experiments. Note: Per-

centage of messages having the most frequent key (p1), arrival rate
(λ) for data streams.

Stream Symbol Messages Keys p1 (%) λ

Wikipedia WP 22M 2.9M 9.32 10817

Twitter TW 1.2G 31M 2.67 864005

Zipf ZF 10M 1k,. . . ,1M ∝ 1∑
x−z -

Table 3: Notation for the algorithms tested.

Symbol Algorithm

kg Key Grouping

ch Consistent Hashing

pkg Partial Key Grouping

potc Power of Two Choices

porc Power of Random Choices

ch Consistent Hashing with Bounded Load

sg Shu�e Grouping

cg Consistent Grouping

Table 4:Metric used for evaluation of the algorithms.

Metric Description

Imbalance Di�erence between the maximum and the average

resource utilization.

Memory Cost Replication cost of the keys

CPU Utilization CPU consumption (%).

Queue Length Number of messages that are pending in the queue

Resource Utilization Ratio between queue length and capacity of worker.

Execute Latency Di�erence between arrival and �nish time.

Throughput Number of messages processed per second.

(S) via shu�e grouping, unless otherwise speci�ed. The sources

forward the received keys to the workers (W) downstream. In our

simulations we assume that the sources perform data extraction

and transformation, while the workers perform data aggregation,

which is the most computationally expensive part of the dag. Thus,

the workers are the bottleneck in the dag and the focus for the load

balancing. Note that for simulation, we ignore the network latency.

Algorithms. Table 3 de�nes the notations used for di�erent algo-

rithm. We use a 64-bit Murmur hash function for implementation

of kg to minimize the probability of collision. Unlike the algorithms

in Table 3, other related load balancing algorithms [3, 7, 10, 40, 46]

require the dspe to support operator migration. Many dspes, such

as Apache Storm, do not support migration, so we omit these algo-

rithms from the evaluation.

Metrics. Table 4 de�nes the metrics used for the evaluation of the

performance of di�erent algorithms.

Resource Utilization. For cg, each worker requires monitoring

its resource utilization that enables the fair message assignment. In

case of simulations, we use queue length and CPU utilization as a

parameter to measure the resource utilization. For the real-world

experiments, we suggest using the queue length as a parameter

for monitoring the resource utilization. In particular, the resource

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Im
b
a
la

n
c
e
 I
(m

)

Epsilon

0

0.5

1

1.5

2

2.5

3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

M
e
m

o
ry

 o
v
e
rh

e
a
d

Epsilon

CG+PoRC
CG+KG
CG+SG

Figure 5: Experiment reporting the imbalance and thememory over-

head for di�erent values of epsilon. The setup includes 10 workers

with each having 10 virtual workers.

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

5 10 50 100

WP

Im
b

a
la

n
c
e

 I
(m

)

Workers

0.0

1.0

2.0

3.0

4.0

5.0

5 10 50 100

WPWP

M
e

m
o

ry
 O

v
e

rh
e

a
d

Workers

CG+KG
CG+PKG

CG+PoTC
CG+SG
CG+CH

CG+PoRC

Figure 6: Experiment reporting normalized imbalance and memory

overhead on a homogeneous cluster with 5, 10, 50 and 100 workers

using WP dataset. Each worker spawns 10 virtual workers and the

ϵ equals 0.01 for ch and porc.

utilization is de�ned by:

Uw (t) =
Lw (t)(#tuples in the queue)
cw (input queue capacity)

The choice of the parameter was motivated by its availability in the

standard Apache Storm distribution (ver 1.0.2).

7.2 Experimental Results

Q1: In the �rst experiment, we simulate the cg scheme by varying

the value of ϵ by �xing the number of sources to 1 and the number

of workers to 10. Each worker is homogeneous and the number

of virtual workers per worker are set to 10. We select the WP

dataset and simulate cg for di�erent values of ϵ . Figure 5 reports

the imbalance and the memory overhead for the experiment. The

results verify our claim that epsilon provides a trade-o� between

imbalance and memory. In particular, cg generates low imbalance

at lower values of epsilon and produces low memory footprint for

higher values of epsilon. Also, the experiment shows that cg is able

to interpolate well between the kg and sg schemes. Based on this

experiment, we use the value of ϵ=0.01 henceforth as it provides a

middle ground between memory and imbalance.

In the next experiment, we compare the imbalance of consistent

grouping using di�erent allocation strategies, i.e., kg, pkg, potc,

porc, ch and sg. We simulate an experiment on a homogeneous

cluster with 5, 10, 50 and 100 workers using the WP dataset. The

number of virtual workers per worker are set to 10, i.e., equivalent

to splitting the keys into 50, 100, 500 and 1000 bins. For ch and porc,

we set to value of ϵ equal to 0.01. Figure 6 shows the imbalance

after the assignment of the streams. Results show that kg and pkg

generate high imbalance, whereas potc and sg generate nearly

perfect load balance. Both ch and porc bound the imbalance close

to a constant factor from the value of ϵ . The imbalance in case

of kg and pkg grows linearly with the increase in the number of

workers. This behavior is due to the fact that both these schemes

restrict a single key to a constant number of workers. ch and porc

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0 5 10 15 20

Q
u

e
u

e
 L

e
n

g
th

Time (Hours)

KG CG

10
0

10
1

10
2

10
3

10
4

10
5

 0 5 10 15 20
E

x
e

c
u

te
 L

a
te

n
c
y

Time in (Hours)

0

0.2

0.4

0.6

0.8

1

 0 5 10 15 20

R
e

s
o

u
rc

e
 U

ti
liz

a
ti
o

n

Time (Hours)

Figure 7: Experiment reporting normalized imbalance and memory

overhead on a homogeneous cluster with 5, 10, 50 and 100 workers

using WP dataset. Each worker spawns 10 virtual workers and the

ϵ equals 0.01 for ch and porc.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 0 5 10 15 20

Q
u

e
u

e
 L

e
n

g
th

Time (Hours)

KG CG SG

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

 0 5 10 15 20

E
x
e

c
u

te
 L

a
te

n
c
y

Time (Hours)

0

0.2

0.4

0.6

0.8

1

 0 5 10 15 20

R
e

s
o

u
rc

e
 U

ti
liz

a
ti
o

n

Time (Hours)

Figure 8: Experiment reporting the a�ect on queue length, execu-

tion latency and resource utilization due to heterogeneity in the

cluster for kg, cg and sg.

bound the imbalance upto a constant factor for each bin. potc and

sg achieve linear perfect imbalance by exploiting all the possible

workers. Interestingly, porc achieves bounded imbalance while

keeping the memory footprint as low as pkg, as shown in Figure 6.

Henceforth, we leverage porc for the next experiments and analyze

consistent grouping.

Q2: To answer this question, we compare the imbalance and

the memory overhead of cg with kg, pkg, potc, ch and sg. We

simulate the DAG for the naïve Bayes classi�er (see section 3) using

the WP dataset and report the value of imbalance measured at the

end of the simulation. The cluster consists of di�erent number of

workers, i.e., 5, 10, 50 and 100 workers. Each experiment considers a

cluster of homogeneous machines. For cg and ch, we set the value

of epsilon equal to 0.01. Figure 9 reports the imbalance and the

memory overhead for di�erent schemes (note the log scale). Results

show that kg performs the worst in terms of the imbalance while

generating the optimal memory footprint. pkg on the other hand

provides nearly perfect imbalance and optimal memory footprint

for smaller deployments, i.e., 5 and 10 workers. However, the imbal-

ance grows as the number of workers increase. potc and sg provide

very similar performance, i.e., provide nearly perfect imbalance and

generate higher memory footprint. ch provides bounded imbalance

and reduces the memory footprint compared to potc and sg. cg pro-

vides the bounded imbalance and improves the memory footprint

compared to ch. This behavior is due to the fact that cg leverages

randomness to redistribute the messages once the principal worker

reaches the capacity, whereas ch always choose the next worker in

the ring.

In the next experiment, we report the queue length, average

execute latency and the resource utilization of the workers by

setting the capacity of the workers in a way that each worker

operates at 80% of the capacity using shu�e grouping. We report

each metric as a di�erence between the maximum and minimum

value. Due to space restriction, we only report the results for 10

workers. For comparison, we also simulate and report kg and cg.

Note that as pkg, potc and sg provide nearly perfect imbalance, we

do not report their results. We simulate the WP dataset, set the value

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

5 10 50 100

WP

Im
b

a
la

n
c
e

 I
(m

)

Workers

0.0

1.0

2.0

3.0

4.0

5.0

5 10 50 100

WPWP

M
e

m
o

ry
 O

v
e

rh
e

a
d

Workers

KG
PKG

PoTC
SG
CH
CG

Figure 9: Experiment reporting normalized imbalance and memory

overhead on a homogeneous cluster with 5, 10, 50 and 100 workers

using WP dataset. Each worker spawns 10 virtual workers and the

ϵ equals 0.01 for ch and porc.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

5 10 50 100

WP

Im
b

a
la

n
c
e

 I
(m

)

Workers

0.0

1.0

2.0

3.0

4.0

5.0

5 10 50 100

WPWP

M
e

m
o

ry
 O

v
e

rh
e

a
d

Workers

1 source
5 sources

10 sources
50 sources

100 sources

Figure 10: Experiment reporting normalized imbalance and mem-

ory overhead on a homogeneous cluster with 5, 10, 50 and 100 work-

ers with using 1, 10, 50, and 100 sources using WP dataset. Each

worker spawns 10 virtual workers and the ϵ equals 0.01 for cg.

of ϵ equal to 0.01 and set the number of virtual worker per worker

equal to 10 for cg. Figure 7 shows the results of the experiment over

time. Results show that the di�erence between the maximum and

minimum queue length and execute latency increases over time

using kg, whereas cg keeps both queue length and execute latency

very low. Also, the di�erence between the maximum and minimum

resource utilization is positive, whereas cg keeps this di�erence to

close to zero.

In the next experiment, we mimic the heterogeneity in the cluster

by assuming a cluster consisting of n machines in whichy machines

are z times more powerful than rest of the machines. In particular,

we vary the value of z between 2 to 10 and vary the value of y
between 1 to n − 1. For instance, when for y = 1 and z = 2, a

machine in a 10 machine cluster has twice the capacity than all the

other nine machines. We de�ne the notion of idle and busy worker

using the Uw (t) < 0.75 · cw and Uw (t) > 0.85 · cw thresholds

respectively. We simulate the kg, sg, cg for comparison and use

the value of epsilon equal to 0.01. In case of cg, each worker is

initialized with 10 virtual workers. We observe similar behavior

in all the con�gurations and report only a single iteration with

y = 3 and z = 5. Figure 8 reports the queue length, execution

latency and resource utilization for the three approaches. Results

show that queue length and execution latency grow for kg and

sg. Similarly, the di�erence between the maximum and minimum

resource utilization is pretty high for these approaches. On the

other hand, cg provides the lower queue length and average latency.

Also, it keeps the di�erence between the maximum and minimum

resource utilization close to zero.

Q3: Further, we evaluate the performance of cg by increasing

the number of sources. In particular, we compare the performance

of di�erent deployments using 1, 10, 50, and 100 sources. For as-

signment of messages to sources, we use sg. Figure 10 reports the

performance of cg in terms of imbalance and memory overhead.

Results show that both imbalance and memory footprint almost

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0 5 10 15 20

Q
u

e
u

e
 L

e
n

g
th

Time (Hours)

α=5 α=10 α=20 α=50 α=100 α=1000

10
0

10
1

10
2

10
3

10
4

10
5

 0 5 10 15 20
E

x
e

c
u

te
 L

a
te

n
c
y

Time (Hours)

0

0.2

0.4

0.6

0.8

1

 0 5 10 15 20

R
e

s
o

u
rc

e
 U

ti
liz

a
ti
o

n

Time (Hours)

Figure 11: Experiment showing the queue length, execution latency

and resource utilization for di�erent number of virtual workers.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 0 5 10 15 20

Q
u

e
u

e
 L

e
n

g
th

Time (Hours)

KG CG SG

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

 0 5 10 15 20

E
x
e

c
u

te
 L

a
te

n
c
y

Time (Hours)

0

0.2

0.4

0.6

0.8

1

 0 5 10 15 20

R
e

s
o

u
rc

e
 U

ti
liz

a
ti
o

n

Time (Hours)

Figure 12: Experiment showing the queue length, execution latency

and resource utilization for when resources are changing over time.

The resources change after processing 6M and 12Mmessages.

remain the same on a log scale by both increasing the number of

workers and number of sources. Therefore, we can conclude that cg

is able to provide similar performance even under higher number

of sources and workers.

In the next experiment, we study the behavior of cg on the

number of virtual workers. We reuse the con�guration for the ex-

periment reported in Figure 8 and report the queue length, execute

latency and resource utilization for cg, i.e., y = 3 and z = 5. We

perform the experiment using number of virtual workers equals to

5, 10, 20, 50, 100 and 1000. Results show that setting the number of

virtual workers to a value of 5 does not provide desired results. This

is due to the fact that there are not enough virtual workers to move

around the workers. Similarly, when the number of virtual workers

are equal to 1000, the system takes longer time to converge, hence

impacting the performance. Executions using 10 and 20 virtual

workers provide similar similar performance. Lastly, the execution

using 100 virtual workers generate the best results.

In the next experiment, we study the performance of cg by

dynamically changing the resources over time. To initialize the

resources, we reuse the con�guration from the previous experiment

and change the capacity of resources twice during the execution, i.e.,

after processing 6M and 12M messages. We execute the experiment

for 100 virtual workers and change the resources in a way that

the sum of resources remains the same. Also, we report the results

of kg and sg for comparison. Figure 12 reports the queue length,

execute latency and resource utilization of the experiment. Results

show that cg adapts very e�ciently to the change in resources.

Q4: Lastly, we study the e�ect of cg on streaming applications

deployed on an Apache Storm cluster running in a private cloud.

We implement and test our technique on the streaming naïve bayes

classi�er example, and perform experiments to compare cg, pkg,

kg, and sg on the TW dataset. The parameters are selected in a

way that the number of sources and workers match the number of

executors in the Storm cluster. In this experiment, we use a topology

con�guration with 8 sources and 24 workers. We report overall

throughput, end-to-end latency and memory footprint.

In the �rst experiment, we evaluate the performance of the al-

gorithms in a homogeneous cluster. We emulate di�erent levels of

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 0.2 0.4 0.6 0.8 1

TW

L
a

te
n

c
y
 (

m
s
)

CPU delay (ms)

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 0.2 0.4 0.6 0.8 1

T
h

ro
u

g
p

u
t

(k
e

y
s
/s

)

CPU delay (ms)

KG
PKG

SG
CG

Figure 13: Experiment reporting the throughput and latency for TW

dataset on a homogenous storm cluster.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 0.2 0.4 0.6 0.8 1

TW

L
a

te
n

c
y
 (

m
s
)

CPU delay (ms)

 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

 0 0.2 0.4 0.6 0.8 1

T
h

ro
u

g
p

u
t

(k
e

y
s
/s

)

CPU delay (ms)

KG
PKG

SG
CG

Figure 14: Experiment reporting the throughput and latency for TW

dataset on a heterogenous storm cluster.

CPU consumption per key, by adding a �xed delay to the processing.

We prefer this solution over implementing a speci�c application

to control better the load on the workers. We choose a range that

can bring our con�guration to a saturation point, although the

raw numbers would vary for di�erent setups. Even though real

deployments rarely operate at saturation point, cg allows better

resource utilization, therefore supporting the same workload on a

smaller number of machines, but working on a higher overall load

point each. In this case, the minimum delay (0.1ms) corresponds

approximately to reading 400kB sequentially from memory, while

the maximum delay (1ms) to
1

10
-th of a disk seek.

7
Nevertheless,

even more expensive tasks exist: parsing a sentence with NLP tools

can take up to 500ms.
8

Figure 13 reports the throughput and end-to-end latency for the

TW dataset on the homogenous cluster. Also, during the experiment,

kg was consuming 7% of memory in the cluster vs. 8.5% for Partial

Key Grouping and cg and 14% for sg. Result shows that kg provides

low memory overhead but coupled with low throughput and high

execution latency. Alternatively, Partial Key Grouping, sg and

cg provide superior performance in terms of throughput, latency

and memory consumption.

Further, we evaluate the performance of cg in the presence of

heterogeneity in the cluster. We use the cpulimit application to

change the resource capacity over time and monitor the behavior of

di�erent approaches in terms of throughput and end-to-end latency.

In particular, we limit the cpu resources of two of the executors to

30% of the available CPU resources to mimic the heterogeneity in

the cluster. During the experiment, we give the system 10 minutes

grace period to reach a stable state before collecting the statistics.

Figure 14 reports the throughput and the end-to-end latency of

the experiment. Results show that cg outperform other approaches

both in terms of throughput and end-to-end latency. In particular,

and compared to kg, it provides up to 2× better end-to-end latency

and 3.44× better performance in terms of throughput.

Overall, we observe that cg is a very competitive solution with

respect to kg, pkg and sg, performing much better with respect to

7
http://brenocon.com/dean_perf.html

8
http://nlp.stanford.edu/software/parser-faq.shtml#n

http://brenocon.com/dean_perf.html
http://nlp.stanford.edu/software/parser-faq.shtml#n

throughput and end-to-end latency and imposing a small memory

footprint, while at the same time tackling the problem of hetero-

geneity of available resources at the workers in the cluster.

8 APPLICATIONS

Consistent grouping follows the same programming primitive as

pkg for stream partitioning and not every algorithm can be ex-

pressed with it. In general, all algorithms that use shu�e grouping

can use cg to reduce their memory footprint. In addition, many

algorithms expressed via key grouping can be rewritten to use cg

in order to get better load balancing. In this section we provide a

few such examples of common data mining algorithms, and show

the advantages of cg. Henceforth, we assume that each message

contains a data point for the application, e.g., a feature vector in a

high-dimensional space.

8.1 Streaming Parallel Decision Tree

A decision tree is a classi�cation algorithm that uses a tree-like

model where nodes are tests on features, branches are possible

outcomes, and leafs are class assignments.

Ben-Haim and Tom-Tov [4] propose an algorithm to build a

streaming parallel decision tree that uses approximated histograms

to �nd the test value for continuous features. Messages are shu�ed

among W workers. Each worker generates histograms indepen-

dently for its sub-stream, one histogram for each feature-class-leaf

triplet. These histograms are then periodically sent to a single ag-

gregator that merges them to get an approximated histogram for

the whole stream. The aggregator uses this �nal histogram to grow

the model by taking split decisions for the current leaves in the tree.

Overall, the algorithm keepsW × D ×C × L histograms, where D
is the number of features, C is the number of classes, and L is the

current number of leaves.

The memory footprint of the algorithm depends on W , so it

is impossible to �t larger models by increasing the parallelism.

Moreover, the aggregator needs to mergeW × D ×C histograms

each time a split decision is tried, and merging the histograms is

one of the most expensive operations.

8.2 Heavy Hitters and Space Saving

The heavy hitters problem consists in �nding the top-k most fre-

quent items occurring in a stream. The SpaceSaving [27] algorithm

solves this problem approximately in constant time and space. Re-

cently, Berinde et al. [5] have shown that SpaceSaving is space-

optimal, and how to extend its guarantees to merged summaries.

This result allows for parallelized execution by merging partial

summaries built independently on separate sub-streams.

In this case, the error bound on the frequency of a single item

depends on a term representing the error due to the merging, plus

another term which is the sum of the errors of each individual

summary for a given item i:

| ˆfi − fi |≤ ∆f +
W∑
j=i

∆j

where fi is the true frequency of item i and
ˆfi is the estimated one,

each ∆j is the error from summarizing each sub-stream, while ∆f
is the error from summarizing the whole stream, i.e., from merging

the summaries.

Observe that the error bound depends on the parallelism level

W . Conversely, by using kg, the error for an item depends only on

a single summary, thus it is equivalent to the sequential case, at the

expense of poor load balancing.

9 RELATEDWORK

Load Balancing is one of the very well-studied problems in dis-

tributed systems. Also, it is very extensively studied in theoretical

computer science [29, 30]. We refer to section 4 for load balancing

in stream processing systems and provide a brief overview of the

load balancing problem for several large-scale distributed systems.

Graph processing systems. Load balancing in graph processing

systems is often found along with balancing graph partitioning,

where the goal often is to minimize edge-cut between di�erent

partitions [15, 16, 26]. Further, several systems have been proposed

speci�cally to solve the load balancing problem, e.g., Mizan [22],

GPS [37], and xDGP [44]. Most of these systems perform dynamic

load rebalancing at runtime via vertex migration. Yan et al. [47]

and Chen et al. [9] propose a mirroring of high-degree vertices the

to achieve better load balancing in pregel-like systems.

Map-Reduce like systems. Load balancing and scheduling often

appears in a similar context in map-reduce like systems, where the

goal is to schedule the jobs to set of machines in order to maxi-

mize the resource utilization [17, 45]. Sparrow [34] is a stateless

distributed job scheduler that exploits a variant of the power of two

choices [35]. Ahmad et al. [1] improves the load balance for map-

reduce in heterogenous environment by monitoring and scheduling

the jobs based on communication patterns. SkewTune [24] solves

the problem of load balancing in MapReduce-like systems by iden-

tifying and redistributing the unprocessed data from the stragglers

to other workers.

Other distributed systems. Dynamic Load balancing in database

systems is often implemented using rebalancing, similar to all the

other systems [36]. Also, online load migration is e�ective for elas-

ticity in the database systems [42, 43]. Sera�ni et al. [39] propose

an online partitioning approach that relies on identi�cation of hot

tuple from the loaded partition for migration along with it’s co-

accessed tuples. Lastly, dynamic load balancing is considered in

the context of web servers [6], GPU [8], data ware housing [20],

peer-to-peer systems [41] and many others.

10 CONCLUSION

We studied the load balancing problem for streaming engines run-

ning in a heterogeneous cluster and processing varying work-

load. In doing so, we proposed a novel partitioning strategy called

Consistent Grouping. cg leveraged two very simple, but extremely

powerful ideas: power of random choices and fair virtual worker as-

signment. In doing so, it e�ciently achieved fair load balancing for

streaming applications processing skewed workloads. We provided

a theoretical analysis of the proposed algorithm and showed via

extensive empirical evaluation that the cg outperforms the state-

of-the-art approaches. In particular, cg achieved 3.44x superior

performance in terms of latency compared to key grouping.

11 ACKNOWLEDGMENT

This paper is produced during the internship of the �rst author at

IBM Research Tokyo. We would like to thank Scott Schneider, Tat-

suhiro Chiba and Takeshi Yoshimura for their constructive feedback

on the paper.

REFERENCES

[1] Faraz Ahmad, Srimat T Chakradhar, Anand Raghunathan, and TN Vijayku-

mar. 2012. Tarazu: optimizing MapReduce on heterogeneous clusters. In ACM
SIGARCH Computer Architecture News, Vol. 40. ACM, 61–74.

[2] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Upfal. 1999. Balanced
allocations. SIAM J. Comput. 29, 1 (1999), 180–200.

[3] Cagri Balkesen, Nesime Tatbul, and M Tamer Özsu. 2013. Adaptive input admis-

sion and management for parallel stream processing. In DEBS. ACM, 15–26.

[4] Yael Ben-Haim and Elad Tom-Tov. 2010. A Streaming Parallel Decision Tree
Algorithm. JMLR 11 (2010), 849–872.

[5] Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J. Strauss. 2010. Space-

optimal heavy hitters with strong error bounds. ACM Trans. Database Syst. 35, 4
(2010), 1–28.

[6] Valeria Cardellini, Michele Colajanni, and S Yu Philip. 1999. Dynamic load
balancing on web-server systems. IEEE Internet computing 3, 3 (1999), 28.

[7] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter

Pietzuch. 2013. Integrating scale out and fault tolerance in stream processing us-

ing operator state management. In Proceedings of the 2013 international conference
on Management of data. ACM, 725–736.

[8] Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R Gao. 2010. Dy-

namic load balancing on single-and multi-GPU systems. In Parallel & Distributed
Processing (IPDPS), 2010 IEEE International Symposium on. IEEE, 1–12.

[9] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. Powerlyra: Di�er-

entiated graph computation and partitioning on skewed graphs. In Proceedings
of the Tenth European Conference on Computer Systems. ACM, 1.

[10] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney,
Ugur Cetintemel, Ying Xing, and Stanley B Zdonik. 2003. Scalable Distributed

[11] F. Farhat, et al. "Stochastic modeling and optimization of stragglers." IEEE
Transactions on Cloud Computing (2016).

[12] Buğra Gedik. 2014. Partitioning functions for stateful data parallelism in stream
processing. The VLDB Journal 23, 4 (2014), 517–539.

[13] Brighten Godfrey, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp,
and Ion Stoica. 2004. Load balancing in dynamic structured P2P systems. In
INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and
Communications Societies, Vol. 4. IEEE, 2253–2262.

[14] P Brighten Godfrey and Ion Stoica. 2005. Heterogeneity and load balance in
distributed hash tables. In INFOCOM 2005. 24th Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings IEEE, Vol. 1. IEEE,
596–606.

[15] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. Powergraph: Distributed graph-parallel computation on natural graphs. In
OSDI. 17–30.

[16] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. Graphx: Graph processing in a distributed data�ow

framework. In 11th USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI 14). 599–613.

[17] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform for

Fine-grained Resource Sharing in the Data Center. In NSDI. Berkeley, CA, USA.

[18] Jinho Hwang and Timothy Wood. 2013. Adaptive Performance-Aware Dis-

tributed Memory Caching.. In ICAC, Vol. 13. 33–43.

[19] Evangelia Kalyvianaki, Marco Fiscato, Theodoros Salonidis, and Peter Pietzuch.
2016. THEMIS: Fairness in Federated Stream Processing under Overload. In
Proceedings of the 2016 International Conference on Management of Data. ACM,
541–553.

[20] Alexandros Karakasidis, Panos Vassiliadis, and Evaggelia Pitoura. 2005. ETL
queues for active data warehousing. In Proceedings of the 2nd international work-
shop on Information quality in information systems. ACM, 28–39.

[21] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. 1997. Consistent hashing and random trees: Distributed caching

protocols for relieving hot spots on the World Wide Web. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing. ACM, 654–663.

[22] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan Williams,
and Panos Kalnis. 2013. Mizan: a system for dynamic load balancing in large-

scale graph processing. In Proceedings of the 8th ACM European Conference on
Computer Systems. ACM, 169–182.

[23] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L
Wolf, Paolo Costa, and Peter Pietzuch. 2016. SABER: Window-based hybrid

stream processing for heterogeneous architectures. In Proceedings of the 2016

International Conference on Management of Data. ACM, 555–569.

[24] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. 2012.

Skewtune: mitigating skew in mapreduce applications. In Proceedings of the 2012

ACM SIGMOD International Conference on Management of Data. ACM, 25–36.

[25] Jimmy Lin and others. 2009. The curse of zipf and limits to parallelization: A

look at the stragglers problem in mapreduce. In 7th Workshop on Large-Scale

Distributed Systems for Information Retrieval, Vol. 1.

[26] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-

scale graph processing. In Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data. ACM, 135–146.

[27] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. E�cient

computation of frequent and top-k elements in data streams. In ICDT. 398–412.

[28] Vahab Mirrokni, Mikkel Thorup, and Morteza Zadimoghaddam. 2016. Consistent

Hashing with Bounded Loads. arXiv preprint arXiv:1608.01350 (2016).

[29] Michael Mitzenmacher. 2001. The power of two choices in randomized load

balancing. IEEE Trans. Parallel Distrib. Syst. 12, 10 (2001), 1094–1104.

[30] Michael Mitzenmacher, Ramesh Sitaraman, and others. 2001. The power of two

random choices: A survey of techniques and results. In Handbook of Randomized

Computing. 255–312.

[31] M. A. U. Nasir, G. De Francisci Morales, D. García-Soriano, N. Kourtellis, and M.

Sera�ni. 2015. Partial key grouping: Load-balanced partitioning of distributed

streams. arXiv preprint arXiv:1510.07623 (2015).

[32] M. A. U. Nasir, G. De Francisci Morales, D. García-Soriano, N. Kourtellis, and M.

Sera�ni. 2015. The power of both choices: Practical load balancing for distributed

stream processing engines. In 2015 IEEE 31st International Conference on Data

Engineering. 137–148.

[33] M. A. U. Nasir, G. D. F. Morales, N. Kourtellis, and M. Sera�ni. 2016. When two

choices are not enough: Balancing at scale in Distributed Stream Processing. In

2016 IEEE 32nd International Conference on Data Engineering (ICDE). 589–600.

[34] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013. Sparrow:

distributed, low latency scheduling. In SOSP. 69–84.

[35] Gahyun Park. 2011. A Generalization of Multiple Choice Balls-into-bins. In

PODC. 297–298.

[36] Erhard Rahm and Robert Marek. 1995. Dynamic multi-resource load balancing

in parallel database systems. In VLDB, Vol. 95. Citeseer, 11–15.

[37] Semih Salihoglu and Jennifer Widom. 2013. GPS: A graph processing system.

In Proceedings of the 25th International Conference on Scienti�c and Statistical

Database Management. ACM, 22.

[38] Scott Schneider, Joel Wolf, Kirsten Hildrum, Rohit Khandekar, and Kun-Lung Wu.

2016. Dynamic Load Balancing for Ordered Data-Parallel Regions in Distributed

Streaming Systems. In Proceedings of the 17th International Middleware Conference.

ACM, 21.

[39] Marco Sera�ni, Rebecca Taft, Aaron J Elmore, Andrew Pavlo, Ashraf Aboulnaga,

and Michael Stonebraker. 2016. Clay: �ne-grained adaptive partitioning for

general database schemas. Proceedings of the VLDB Endowment 10, 4 (2016),

445–456.

[40] Mehul A Shah, Joseph M Hellerstein, Sirish Chandrasekaran, and Michael J

Franklin. 2003. Flux: An adaptive partitioning operator for continuous query

systems. In Data Engineering, 2003. Proceedings. 19th International Conference on.

IEEE, 25–36.

[41] Sonesh Surana, Brighten Godfrey, Karthik Lakshminarayanan, Richard Karp, and

Ion Stoica. 2006. Load balancing in dynamic structured peer-to-peer systems.

Performance Evaluation 63, 3 (2006), 217–240.

[42] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015. C3:

Cutting tail latency in cloud data stores via adaptive replica selection. In 12th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 15).

513–527.

[43] Rebecca Taft, Essam Mansour, Marco Sera�ni, Jennie Duggan, Aaron J. Elmore,

Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-store: Fine-

grained Elastic Partitioning for Distributed Transaction Processing Systems. Proc.

VLDB Endow. 8, 3 (Nov. 2014), 245–256. DOI:https://doi.org/10.14778/2735508.

2735514

[44] L Vaquero, Félix Cuadrado, Dionysios Logothetis, and Claudio Martella. 2013.

xDGP: A Dynamic Graph Processing System with Adaptive Partitioning. arXiv

abs/1309.1049 (2013).

[45] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-

hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth

Seth, and others. 2013. Apache hadoop yarn: Yet another resource negotiator. In

SCC. 5.

[46] Ying Xing, Stan Zdonik, and Jeong-Hyon Hwang. 2005. Dynamic load distribution

in the borealis stream processor. In ICDE. 791–802.

[47] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2015. E�ective techniques for

message reduction and load balancing in distributed graph computation. In

Proceedings of the 24th International Conference on World Wide Web. ACM, 1307–

1317.

[48] Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy H Katz, and Ion Stoica.

2008. Improving MapReduce performance in heterogeneous environments.. In

Osdi, Vol. 8. 7.

https://doi.org/10.14778/2735508.2735514
https://doi.org/10.14778/2735508.2735514

	Abstract
	1 Introduction
	2 Overview of the Approach
	3 Preliminaries & Problem Definition
	4 Background
	4.1 Existing Stream Partitioning Functions
	4.2 Consistent Hashing.
	4.3 Other Approaches

	5 Solution
	5.1 Power of Random Choices
	5.2 Consistent Grouping
	5.3 Integration in a dspe

	6 Analysis
	6.1 Imbalance with Consistent Grouping
	6.2 Memory with Consistent grouping

	7 Evaluation
	7.1 Experimental Setup
	7.2 Experimental Results

	8 Applications
	8.1 Streaming Parallel Decision Tree
	8.2 Heavy Hitters and Space Saving

	9 Related Work
	10 Conclusion
	11 Acknowledgment
	References

