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Abstract: The past decades have seen an explosion of research using electrophysi-
ological or neuroimaging techniques for studying the neurocognitive underpinnings
of second language (L2) processing. Although this field has a shorter history than
does research on language learning more generally, important insights into the neu-
rocognitive basis of L2 processing have driven it to the center stage of language sci-
ence. In this target article for Language Learning’s 75th Jubilee volume, I illustrate
the field’s impressive achievements by selectively reviewing electrophysiological and
neuroimaging research on L2 processing and bilingual brain organization. I also re-
view changing perspectives in the field (including individual difference and experience-
based perspectives, neural network approaches, neuroplasticity, and L2-learning re-
lated neural changes) and identified challenges, promises, and future directions (revisit
native-speaker benchmark, increase linguistic diversity, enhance ecological validity, in-
tensify research on child L2 learners’ brain, adopt lifelong approach to L2 learning)
that can lead to a better understanding of the neural underpinnings of L2 learning and
processing.
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Introduction

Since the publication of early studies using electrophysiological and neu-
roimaging techniques to study second language (L2) learning and processing
in the mid to late 1990s, research on the bilingual brain has generated much
enthusiasm. In this target article for Language Learning’s 75th Jubilee vol-
ume, I review selected topics on L2 learning and processing in the bilingual
brain that have moved the field forward and led to important insights into the
neurocognitive underpinnings of L2 processing across the lifespan. In line with
Language Learning’s aim to contribute to the understanding of language learn-
ing, I will focus on developments in understanding the neurocognitive basis of
L2 learning. This implies that I will not discuss topics in the broader field
of advanced bilingualism that have seen major theoretical and empirical de-
velopments in the past 25 years, such as neurocognitive studies on language
control and domain-general cognitive tasks (for an excellent review, see Tao
et al., 2021), neurocognitive contributions to the bilingual cognitive advantage
debate (Bialystok & Craik, 2022; Paap et al., 2015, and commentaries), or the
neurocognitive basis of codeswitching (Van Hell et al., 2018).

I have organized this conceptual review as follows. I start with describing
two classical (series of) studies published in the late 1990s that illustrate two
major neurocognitive techniques used to study the neurocognitive underpin-
nings of L2 learning and processing in the past decades, electroencephalog-
raphy (EEG)/event-related potentials (ERPs; Weber-Fox & Neville, 1996) and
positron emission tomography (PET)/functional magnetic resonance imaging
(fMRI; e.g., Chee et al., 1999; Kim et al., 1997; Klein et al., 1995; Perani
et al., 1998); each sparked highly productive lines of research. For each line
of research, I then illustrate the field’s impressive achievements by outlining
several major insights acquired over the past 25 years, discuss some chang-
ing perspectives, and identify challenges, promises, and future directions. But
first I discuss a foundational theoretical perspective underlying these and many
studies on the neurocognitive basis of L2 learning and processing, the critical
period hypothesis.

Critical Period Hypothesis for L2 Learning
Shortly after publication of the first studies using neurocognitive techniques to
examine L2 learning and processing, Science identified the question “Why are
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van Hell Neurocognitive Underpinnings of L2 Processing

there critical periods for language learning?” as one of the 125 critical ques-
tions for the next 25 years (Kennedy & Norman, 2005). This question ensued
from the observation that “children pick up languages with ease while adults
often struggle to learn train station basics in a foreign language” (Kennedy &
Norman, 2005, p. 93), mentioning the monitoring of brain activity as a window
to shed light on the biological basis of L2 learning.

Whether there is a critical period for language learning, or in fact one for
any human skill, is a longstanding and fundamental question in human de-
velopment. Understanding language as a biological system governed by mat-
urational stages in an organism’s lifespan during which the nervous system
is especially sensitive to certain environmental stimuli, Penfield and Roberts
(1959) proposed a critical period for language development, later popularized
by Lenneberg (1967) in his book Biological Foundations of Language. The
notion of a critical period for language learning was adopted by research on
L2 learning in the 1980s (instigated by Johnson & Newport’s, 1989, classical
study) and has remained a popular, yet highly disputed, research topic ever
since (e.g., Berken et al., 2017; Birdsong, 2018; DeKeyser, 2013; Singleton &
Lesniewska, 2021; Steinhauer, 2014). Behavioral studies focused on the timing
of the critical period, the shape of the function that relates age of acquisition
(AoA) to ultimate L2 attainment, and the existence of multiple, separate crit-
ical periods for different aspects of language. Neurocognitive studies started
out with the question of whether there is a biologically based critical period for
L2 learning after which learners are unable to acquire and process their L2 in
a way that is qualitatively similar to native language (L1) speakers. This bio-
logically constrained learning has typically been related to a loss of brain plas-
ticity after a critical (or sensitive) period for language learning in childhood,
with the implication that adult L2 learning is driven by fundamentally differ-
ent neurocognitive mechanisms than is child L1 development. Key constructs
leading this research have been AoA and nativelike ultimate attainment—using
attainment scores of native speakers as decisive yardsticks.

As I will show, decades later this quest evolved into a better understand-
ing of the intricacies of the relationships between neuroplasticity, language
experience, and variation in L2 learning outcomes (e.g., DeLuca et al., 2019;
Steinhauer, 2014). Facilitated by advances in neurocognitive methodologies
and better synergy between language science and neuroscience (cf., Grosjean
et al., 2003), researchers learned that language learning is not constrained to
an age-bound critical period; rather, numerous studies provided evidence for
continued neuroplasticity for language learning in the adult brain. At the very
least, critical periods were reformulated as changes in neural plasticity, or
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van Hell Neurocognitive Underpinnings of L2 Processing

qualitative shifts in the recruitment of neural systems, in the course of L2
learning. Before moving to discussing neurocognitive research on L2 learning
and processing, I briefly outline the primary neuroscientific methods used in
this field.

Electroencephalography and Functional Magnetic Resonance Imaging
Methodologies
As this paper features studies using EEG/ERP and fMRI techniques, a basic de-
scription of these techniques follows; for more details on EEG/ERP and fMRI
in L2 research, see Dickson and Pelzl (in press) and Kousiae and Klein (in
press). EEG records electrical activity in the brain over time, measured at the
scalp. ERPs reflect very small voltage changes in brain activity that are time-
locked to the onset of specific events such as a critical word in a sentence. They
provide an online millisecond-by-millisecond record of the brain’s electrical
activity during cognitive processing as it unfolds over time. ERP studies on L2
processing have often used a violation paradigm and compared processing of a
violation of a (morpho)syntactic principle (e.g., subject–verb agreement as in
The girl *walk to school) or semantic anomaly (e.g., The nail *walks to school)
with processing their correct counterparts.

An ERP signal comprises a sequence of positive and negative peaks related
to stimulus processing. These ERP components are characterized by polarity,
latency, amplitude, scalp distribution, and a functional description of mental
processes that they are assumed to reflect—the functional significance of ERP
components remains a topic of continued research and discussion. The main
components associated with sentence processing are the early-left anterior neg-
ativity (ELAN), left anterior negativity (LAN), N400, and P600.

� The ELAN is an anterior negativity between 150–250 ms, often lateral-
ized over the left hemisphere, and has been associated with automatic
early syntactic parsing and building up an initial phrase structure (e.g.,
Hahne & Friederici, 1999; cf. Steinhauer & Drury, 2012).

� The LAN is an anterior negativity, often left-lateralized, in the 300–500
ms range, and has been associated with the integration of morphosyntac-
tic information in a sentence structure (e.g., Caffarra et al., 2017; Moli-
naro et al., 2011).

� The N400 is a centro-parietal negative-going wave in the 300–500 ms
range. The N400 is taken to reflect semantic access that depends on
several factors, for example, the strength of the semantic relation be-
tween the target word and the preceding sentence (e.g., Federmeier,
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2021; Kutas & Federmeier, 2011; for further discussion, see Bornkessel-
Schlesewsky & Schlesewsky, 2019).

� The P600 is a large positive-going wave that emerges around 500–600
ms poststimulus and extends for several hundred milliseconds and has a
centro-parietal distribution. The P600 has been associated with syntac-
tic reanalysis and repair following the detection of a syntactic violation
(e.g., Osterhout & Holcomb, 1992) or processing syntactically complex
structures (Kaan et al., 2000); for recent discussions on the functional
significance of the P600, see Kuperberg et al. (2020), Leckey and Fed-
ermeier (2020), Tanner et al. (2017), and, in L2 learners related to their
subjective grammars, see Lemhöfer et al. (2020).

L2 learners’ ERP signatures have been found to sometimes deviate from the
aforementioned patterns (as further discussed below) and can vary with L2 ex-
perience and proficiency (Steinhauer et al., 2009). In particular, ERP responses
to (morpho)syntactic violations may not emerge in beginning L2 learners,
can show N400-like signatures in intermediate learners, and can show a more
canonical P600 (sometimes delayed and with smaller amplitudes), sometimes
preceded by a LAN, in advanced L2 learners.

EEG/ERP techniques enable fine-grained temporal analyses of brain acti-
vation patterns but have a poor spatial resolution. fMRI is a noninvasive hemo-
dynamic neuroimaging technique that has a high spatial resolution (but a poor
temporal resolution) and provides insight into the spatial organization of neu-
ral activity during task performance. Blood releases oxygen to active neurons
at a greater rate than it releases oxygen to inactive neurons. The blood-oxygen-
level-dependent (BOLD)-signal, detected in fMRI, reflects changes in mag-
netism caused by increased oxygen-rich blood flow to active brain regions.
The BOLD-signal is used as an index of the level of activity of particular
brain areas as a result of conducting a specific cognitive task (see Soares et al.,
2016, for more details on fMRI physics and methodology). The majority of
task-based fMRI studies on L2 processing examined the function of specific
brain regions, but in line with general trends in neuroimaging research, the fo-
cus has gradually been shifting toward characterizing functional networks that
connect different brain regions (see the section Neural Network Approaches).
I now turn to empirical work that used electrophysiological and neuroimag-
ing techniques to explore the neurocognitive underpinnings of L2 learning and
processing.

5 Language Learning 0:0, June 2023, pp. 1–44
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Electrophysiological Studies on L2 Learning and Processing:

Setting the Stage

The seminal work by Weber-Fox and Neville (1996) was among the first pub-
lished studies that used the EEG/ERP technique to examine L2 processing
and tested the critical period hypothesis. Using the violation paradigm, adult
Chinese learners of L2 English (with different AoAs: 1–3, 4–6, 7–10, 11–13
years, or after 16 years) read sentences with a semantic or syntactic violation
(phrase structure or specificity constraint violation) and their correct counter-
parts. ERPs to semantic violations (N400s) of all L2 learner groups were com-
parable to those of native English speakers, although L2 learners with AoA of
11 years or higher had slightly delayed N400 peak latencies. In contrast, L2
learners’ ERP profiles for syntactic violations, irrespective of AoA, differed
from those of native speakers and appeared less nativelike with increasing
AoA. Specifically, in native speakers, syntactic violations elicited an ELAN
followed by a LAN and P600. By contrast, L2 learners showed a LAN (bilat-
erally distributed in L2 learners with AoA of 11 years or older), followed by
a nativelike P600 in L2 learners with an AoA before 11 years but a delayed
(AoA 11–13 years) or no (AoA > 16) P600 in later L2 learners. Weber-Fox
and Neville (1996) concluded that maturational changes constrain the neural
systems that are relevant for language learning and processing and that puberty
marks a significant point in development for language learning capacity. They
further concluded that subsystems specialized for semantic and syntactic pro-
cessing display different sensitive periods and that particularly the syntactic
system is constrained by maturational processes.

Weber-Fox and Neville’s (1996) seminal study sparked a wealth of neu-
rocognitive work studying neural plasticity and late L2 learning (for reviews,
see Hernandez & Li, 2007; Van Hell & Tokowicz, 2010; Steinhauer, 2014;
Caffarra et al., 2015),1 and new insights, two of which I discuss in the next two
sections: the impact of L2 proficiency (section Age of Acquisition or L2 Profi-
ciency?) and (dis)similarity of L2–L1 structures (section L1–L2 Similarity–
Dissimilarity of Grammatical Structures). The linguistic domain on which
much of this work focused is L2 grammatical processing, therefore the next
two sections mainly describe ERP studies on L2 (morpho)syntactic processing.

Age of Acquisition or L2 Proficiency?
The bilinguals tested in Weber-Fox and Neville’s (1996) study not only dif-
fered in AoA of L2 English but also in their life-long exposure to English and
L2 proficiency. Because of this confound, the observed differences between
AoA groups cannot be unequivocally attributed to AoA and may have been
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van Hell Neurocognitive Underpinnings of L2 Processing

driven at least partly by differences in L2 proficiency (Caffarra et al., 2015;
Steinhauer, 2014; Van Hell & Tokowicz, 2010). Pakulak and Neville (2011) di-
rectly addressed the AoA–L2 proficiency confound in Weber-Fox and Neville
(1996) by comparing German late learners of L2 English with L2 proficiency-
matched native English speakers. Phrase structure violations, relative to cor-
rect controls, elicited a bilateral and prolonged anterior negativity followed
by a P600 in native speakers but elicited only a P600 (more widespread
spatially and temporally) in L2 learners. Pakulak and Neville (2011) concluded
that syntactic processes are sensitive to maturational constraints, corroborating
Weber-Fox and Neville’s (1996) findings that even highly proficient L2 speak-
ers rely on different neural mechanisms during syntactic processing from those
on which native speakers rely.

Arguably, disentangling AoA and L2 proficiency effects by comparing L2
learners with proficiency-matched native speakers is not the optimal method
for isolating AoA from L2 proficiency effects in L2 processing. An alternative
approach is to compare groups of L2 learners who vary in L2 proficiency but
are matched on AoA (e.g., Bowden et al., 2013; Hanna et al., 2016; Rossi et al.,
2006). For example, Bowden et al. (2013) tested English classroom learners of
L2 Spanish who started Spanish classes at the same age (12–14 years) and
did not differ in the amount of classroom exposure to Spanish until the age of
17 years. Tested in university, the low-intermediate L2 proficiency group had
two semesters of L2 Spanish classroom experience in university, and the ad-
vanced proficiency group had nearly seven semesters of L2 Spanish classroom
experience and one to two semesters of immersion experience in a Spanish-
speaking country. Syntactic word order violations in L2 Spanish sentences (re-
versing nouns and verbs) elicited a LAN–P600 effect in advanced L2 learners
(similar to L1 Spanish speakers tested on the same materials), whereas low–
intermediate L2 learners showed a left anterior to centro-anterior positivity
followed by a centro-posterior to posterior positivity in these time windows.
Semantic violations elicited similar N400 effects in all groups. Bowden et al.’s
(2013) findings exemplify the overall pattern that ERP signatures associated
with L2 syntactic processing are modulated by L2 proficiency, with higher-
proficiency L2 learners often displaying patterns that come close to those of
native speakers, whereas ERP responses of lower-proficiency L2 learners may
display both qualitative and quantitative differences.

The above studies treated AoA and L2 proficiency as categorical measures
for classifying specific groups of learners. Several recent studies have treated
these variables as continuous measures in their experimental design and anal-
ysis (e.g., Fromont et al., 2020; Meulman et al., 2015; Nichols & Joanisse,
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van Hell Neurocognitive Underpinnings of L2 Processing

2019). Using general additive modeling, Meulman et al. (2015) treated age as
a continuous variable and studied the (nonlinear) ERP pattern over time to ex-
amine potential latency effects. Russian and Polish advanced learners of L2
German, with a wide range of L2 AoA, listened to grammatically correct and
incorrect sentences containing violations of nonfinite verbs and grammatical
gender agreement. Verb agreement violations elicited a P600 in native Ger-
man speakers and in all bilinguals irrespective of their AoA. Gender agreement
violations elicited a P600 in bilinguals with an AoA up to 20 years, whereas
bilinguals with a higher AoA showed a posterior negativity in this time win-
dow. Importantly, the general additive modeling analysis revealed that AoA
effects were linear and did not show any evidence of a discontinuity, which
argues against the critical period hypothesis (for analogous reasoning based on
behavioral evidence, see, e.g., Birdsong, 2018).

More recently, Fromont et al. (2020) recorded EEG while late L2 learners
of French and French native speakers read sentences that were correct or con-
tained a syntactic-category error, a semantic anomaly, or both. Analyses based
on a traditional group design, comparing the group of late L2 learners with
the group of native speakers, showed that ungrammatical sentences elicited a
typical biphasic LAN–P600 in native speakers and an N400 in L2 learners, a
qualitative difference in line with the critical period hypothesis. Importantly,
however, individual brain data modeling using a random forests approach re-
vealed that learners’ L2 proficiency and amount of L2 exposure were the most
reliable predictors explaining L2 learners’ ERP responses, whereas AoA was
the least important variable.

Other approaches that have been adopted for studying the impact of L2
proficiency on EEG/ERP signatures associated with L2 syntactic processing,
while keeping AoA constant, are longitudinal studies of L2 learners (e.g.,
Gabriele et al., 2021; McLaughlin et al., 2010; Osterhout et al., 2006; White
et al., 2012) and studies using artificial languages or miniature natural lan-
guages to track proficiency-related changes within a short timeframe (e.g.,
Batterink & Neville, 2013; Citron et al., 2011; Friederici et al., 2002; Grey
et al., 2018; Morgan-Short et al., 2010, 2012; Pereira Soares et al., 2022;
for review, see Morgan-Short, 2020). Combining the benefits of a longitu-
dinal design and teaching an artificial (and manipulable) language, Morgan-
Short et al. (2010, 2012) taught adults Brocanto2, an artificial language whose
syntactic rules conform to natural-language universals. Learners received ex-
plicit training (metalinguistic explanation and meaningful examples) or im-
plicit training (only meaningful examples). After the first and after the third
and final training session, ERP responses to sentences with morphosyntac-

Language Learning 0:0, June 2023, pp. 1–44 8

 14679922, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/lang.12601, W

iley O
nline L

ibrary on [09/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



van Hell Neurocognitive Underpinnings of L2 Processing

tic violations (noun–adjective and determiner–noun gender agreement viola-
tions; Morgan-Short et al., 2010) and syntactic violations (word order viola-
tions; Morgan-Short et al., 2012) were collected. At lower proficiency levels,
these violations elicited an N400 in the implicit group but no significant ERP
response in the explicit group (with the exception of a late N400 for noun–
adjective violations). Different ERP signatures were observed as learners’ pro-
ficiency increased. At higher proficiency levels, noun–adjective (morphosyn-
tactic) violations elicited an N400, and determiner–noun (morphosyntactic)
violations elicited a P600 in both implicit and explicit learners; syntactic vio-
lations elicited a bilateral anterior negativity followed by a P600 in the implicit
group and an anterior positivity followed by a P600 in the explicit group. These
qualitative changes in ERP patterns paralleled changes in ERP signatures in
the course of L2 learning as also had been observed in longitudinal studies
with classroom learners (e.g., Gabriele et al., 2021; McLaughlin et al., 2010;
Osterhout et al., 2006; White et al., 2012) and indicated that ERP signatures
associated with (morpho)syntactic structures change toward more nativelike
patterns with increased proficiency levels.

In conclusion, since Weber-Fox and Neville’s (1996) seminal study, the
field has developed different approaches for examining the effects of AoA and
L2 proficiency. Together these studies have demonstrated that variability in
L2 proficiency (which may or may not relate to variability in AoA) modu-
lates ERP signatures associated with L2 grammatical processing, leading to
the overall conclusion that high-proficiency L2 learners often display patterns
that approach native speakers’ processing, whereas low-proficiency L2 learn-
ers’ ERP responses display quantitative and qualitative differences.

L1–L2 Similarity–Dissimilarity of Grammatical Structures
Although Weber-Fox and Neville’s (1996) seminal study examined ERPs
with respect to two types of syntactic violations—phrase structure violations
and specificity constraint violations, they did not systematically manipulate
whether these syntactic structures are similar or dissimilar to corresponding
structures in bilinguals’ L1. Decades of research in the field of L2 acquisition
has provided evidence that L1 knowledge impacts L2 learning and that similar-
ities and dissimilarities between L1 and L2 systems are at the root of negative
and positive crosslinguistic transfer effects (for review, see McManus, 2021).
This has also become an important research topic in ERP studies published
after Weber-Fox and Neville’s (1996) study, with most studies comparing L2
learners’ processing of L2 grammatical structures that are similar or different

9 Language Learning 0:0, June 2023, pp. 1–44
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van Hell Neurocognitive Underpinnings of L2 Processing

in their L1 with native speakers’ processing of these same grammatical struc-
tures (for review, see Caffarra et al., 2015).

A prominent theoretical basis in ERP studies on crosslinguistic transfer
in L2 grammatical learning and processing is MacWhinney’s (2005) unified
competition model for L2 learning (for alternative models, see, e.g., univer-
sal grammar-based generative perspectives such as the failed functional fea-
tures hypothesis or the full transfer/full access theory; e.g., Hawkins & Chan,
1997; Schwartz & Sprouse, 1996; for a different perspective, see Clahsen &
Felser’s, 2006, shallow structure hypothesis). The unified competition model
postulates that when grammatical features are similarly instantiated in L1 and
L2, L2 learners can easily and effectively apply L1 knowledge to learn and
process L2 structures, and positive transfer takes place. In contrast, negative
transfer occurs when linguistic features are present in L1 and L2 but are dif-
ferently instantiated, which may lead to online competition between the lan-
guages. For syntactic structures unique in the learner’s L2, there is no trans-
fer or competition from L1, in which case L2 cue strength (i.e., the level of
availability and reliability) will determine how well these L2 structures will be
learned.

In a first ERP study that manipulated L1–L2 grammatical overlap
to directly test the predictions of the competition model, Tokowicz and
MacWhinney (2005) presented native English speakers enrolled in beginning
Spanish classes with Spanish sentences containing syntactic violations and
correct controls. The critical structures were formed similarly (auxiliary omis-
sion) or differently (determiner number agreement) in Spanish and English or
were unique to Spanish and absent in English (determiner gender agreement).
Even though behavioral grammaticality judgement accuracy was at chance
for all constructions (see also McLaughlin et al., 2004), ERP data revealed
P600 effects in response to violations for the similar and unique structures but
not for the dissimilar structure. Tokowicz and MacWhinney concluded that
learners are able to process certain aspects of L2 syntax, even in the early stage
of L2 learning, but that this knowledge depends on the similarity between the
L1 and the L2 systems, in line with the competition model.

Subsequent studies paralleled the finding of nativelike P600 effects when
L2 structures are expressed similarly in L1, whereas for L2 grammatical struc-
tures that are expressed differently in L1 or are unique to L2, findings were
more mixed. To exemplify the latter, some studies observed that L2 learners
demonstrated no P600 or a reduced or differently timed P600 relative to na-
tive speakers (e.g., Carrasco-Ortíz et al., 2017; Erdocia et al., 2014; Foucart
& Frenck-Mestre, 2011, 2012; Rossi et al., 2014; Sabourin & Stowe, 2008),
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van Hell Neurocognitive Underpinnings of L2 Processing

whereas others did not observe marked differences between (advanced) L2
learners and native speakers (e.g., Alemán Bañón et al., 2014; Gillon Dowens
et al., 2011; White et al., 2012). Occasionally, N400 effects were observed
in response to dissimilar or unique L2 constructions (e.g., Foucart & Frenck-
Mestre, 2012), which aligned with longitudinal studies (e.g., Gabriele et al.,
2021; McLaughlin et al., 2010; Osterhout et al., 2006) or individual brain-
based studies (Tanner et al., 2014) showing that in earlier L2 learning stages
learners can show an N400 to syntactic violations that gradually shifts to a
classic (nativelike) P600 effect as proficiency increases (in line with Steinhauer
et al.’s, 2009, stage-wise model).

Remarkably few studies examined how L1–L2 (dis)similarity impacts lan-
guage processing at different levels of proficiency within one learner pop-
ulation using either cross-sectional (e.g., Alemán Bañón et al., 2018; Diaz
et al., 2016; Mickan & Lemhöfer, 2020) or longitudinal (e.g., Morgan-Short
et al., 2010, 2012; Osterhout et al., 2006) designs. These studies are particu-
larly insightful for tracking L2 proficiency-related changes in the transfer of
L1 structures to L2 syntactic processing. For example, Mickan and Lemhöfer
(2020) tested three groups of German learners of L2 Dutch who had been im-
mersed in Dutch for three months (beginning learners), 10 months (intermedi-
ate learners), or at least 18 months (advanced learners), and a group of native
Dutch speakers. The study measured behavioral and ERP responses for Dutch
sentences containing violations of syntactic constructions that were similar
(subordinate clause inversion) or dissimilar (sentence-final double infinities)
across Dutch and German and their correct counterparts. ERPs to similar con-
structions provided evidence in line with Steinhauer et al.’s (2009) stage-wise
model: Beginning learners showed an N400-like negativity, whereas interme-
diate and advanced learners showed P600s similar to those of native speak-
ers. Dissimilar constructions also elicited an N400-like negativity in beginning
learners but delayed and smaller P600s in intermediate and advanced learn-
ers relative to native speakers. Importantly, these data indicate that progres-
sion through the L2 learning stages is not solely driven by L2 proficiency but
can also be modulated by the level of (dis)similarity of syntactic structures
across L2 and L1 and the extent to which L2 learners can transfer knowledge
of their L1 to L2. Progression from qualitatively different ERP signatures (from
N400 to P600) to nativelike P600 effects appears slower for dissimilar syntac-
tic structures that do not enable L1–L2 knowledge transfer.
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van Hell Neurocognitive Underpinnings of L2 Processing

Electrophysiological Studies: Current Status and Future Directions

The above-reviewed EEG/ERP studies have provided evidence that L2 gram-
matical learning and processing is not only modulated by AoA but also by
L2 proficiency and similarity, dissimilarity, or uniqueness of L2–L1 structures.
Variability in these factors yields quantitative and qualitative differences in
ERP signatures associated with L2 syntactic processing beyond Weber and
Neville’s (1996) original conclusion that “maturational changes significantly
constrain the development of the neural systems that are relevant for language”
(p. 231). More generally, these findings also question the conclusion that AoA
effects necessarily point to a loss of brain plasticity during a specific period
early in life (a point I return to later when discussing neuroimaging studies).
In this section, I outline three underexplored yet promising topics for further
advancing insights into the neurophysiological correlates of L2 syntactic pro-
cessing: (a) studying interindividual variation in ERP response profiles, (b)
examining oscillatory neural dynamics and neural network activation patterns
associated with L2 processing, and (c) revisiting the notion of the gold standard
of the native speaker as the ultimate goal for L2 learning.

Individual Differences Beyond Age of Acquisition and L2 Proficiency and
Individual Variation in Event-Related-Potential Response Profiles
Future EEG research should embrace a wider range of individual differences
measures beyond AoA and L2 proficiency and study, for example, how
variability in cognitive functions, language learning aptitude, and motivation
impacts electrophysiological correlates of L2 processing; this point also ap-
plies to neuroimaging studies as will be discussed in the section Neuroimaging
Studies on L2 Learning and Processing: Setting the Stage (e.g., Turker et al.,
2021). Recent studies using behavioral measures demonstrated that these cog-
nitive and personality variables can affect L2 learning and learning trajectories
over time (e.g., Dörnyei, 2014; Linck et al., 2014; Saito et al., 2020; Sparks,
2012). An emergent literature using EEG methodology has given evidence
that, for example, cognitive control (e.g., Covey et al., in press; Pulido, 2021;
Zirnstein et al., 2018), working memory (e.g., Gabriele et al., 2021; but see
Dong et al., 2022), declarative and procedural memory abilities (e.g., Faretta-
Stutenberg & Morgan-Short, 2018; Morgan-Short et al., 2014), and motivation
to speak the L2 as a native speaker (Tanner et al., 2014) also impact L2 sen-
tence processing. For example, L1 English learners of L2 Spanish with better
working memory skills exhibited greater ERP grammaticality effects (P600)
to noun–adjective number violations, with a similar trend for noun–adjective
gender violations (Gabriele et al., 2021). These findings suggest that work-
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van Hell Neurocognitive Underpinnings of L2 Processing

ing memory, responsible for control, regulation, and active maintenance of
information when processing potentially distracting information (e.g., Linck
et al., 2014), shapes learners’ neural sensitivity to linguistic features (including
anomalies) during online L2 sentence processing. Relatedly, Zirnstein et al.
(2018) observed that bilinguals with better inhibitory control abilities were
better able to generate predictions of upcoming information and to navigate
prediction errors during online L2 sentence processing.

Because individual differences in ERP signatures have only recently be-
gun to be studied in neurolinguistic research (see Tanner et al., 2018), more
systematic evidence is needed to better understand how individual difference
variables affect the neural time course of L2 grammar learning and process-
ing as it unfolds in real time. Questions that warrant further research include
identifying which individual difference variables shape the processing of a
given linguistic phenomenon and the extent to which a given individual dif-
ference variable affects multiple linguistic phenomena. Using advanced lin-
ear models, such as hierarchical mixed effects or generalized linear mixed ef-
fects models, that relate the magnitude or peak latency of ERP components
(e.g., the P600) with individual difference measures is a valuable approach for
providing further insight into how variation in learners’ cognitive, language-
experience, and personality variables affects L2 processing (e.g., Covey et al.,
2022; Dong et al., 2022; Nichols & Joanisse, 2019; Zirnstein et al., 2018;
see Meulman et al., 2015, for a generalized additive modeling approach and
Fromont et al., 2020, for a random forests approach). A further advance-
ment is that these techniques treat individual difference variables as contin-
uous measures rather than as categorical variables, which enables more fine-
grained and nuanced insights into the dynamics of individual difference vari-
ables on the ERP signal that cannot be obtained by traditional group-based
ANOVAs.

ERP studies on syntactic processing in L2 learners have typically ana-
lyzed and reported grand-average waveforms. These group-based grand av-
erages often misrepresent L2 learners’ individual ERP signatures that can vary
substantially across individuals in terms of the amplitudes and latencies of
ERP components. This individual variability is lost when calculating a grand
average ERP waveform. More specifically, biphasic negative–positive grand
mean ERP waveforms (N400 followed by P600) have been found to be the
result of averaging across individuals who actually show different ERP re-
sponse profiles (e.g., Beatty-Martínez et al., 2021; Grey, 2023; Tanner et al.,
2014; Qi et al., 2017). For example, testing proficient Spanish–English bilin-
guals, Tanner et al. (2014) observed an N400–P600 grand average waveform in
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van Hell Neurocognitive Underpinnings of L2 Processing

response to subject–verb agreement violations in L2 English, but computations
of the response-dominance index revealed that these violations actually elicited
N400s in some individuals and P600s in others (see Tanner et al., 2014, for de-
tails on computing the response dominance index). As a qualitative transition
from N400 to P600 effects has been identified as a hallmark of L2 learning,
the group-based grand average may obscure that some, but not all, learners
have already progressed to a more advanced proficiency level. In addition, in-
dividual variability may also underlie the lack of statistical power for reliably
detecting a given (canonical) ERP component at the group-based grand aver-
age level: The absence of a nativelike P600 in the group-based grand average
waveform of L2 learners may actually reflect individual variability in ERP re-
sponse profiles.

Apply Advanced Electroencephalography Techniques to Study L2
Processing
Most EEG-based neurocognitive research on L2 learning and processing used
the ERP technique. This field would be further enhanced by adapting new
advancements in EEG techniques, including analyses of oscillatory neural
dynamics using time frequency representations (e.g., Bakker et al., 2015;
Kielar et al., 2014; Lewis et al., 2016; Litcofsky & Van Hell, 2017; Rossi &
Prystauka, 2020) and of neural network activation patterns associated with L2
processing (e.g., Pérez et al., 2015). Time frequency representations index the
ongoing oscillatory dynamics of the EEG signal and reflect the (de)synchrony
of functional neural networks. In these analyses, power, or activity, in different
frequency bands (delta, theta, alpha, beta, and gamma) in response to stimuli is
of interest; power changes in each frequency band are associated with specific
cognitive processes (for more details and application to L2 research, see Rossi
et al., 2023). For example, testing English late L2 learners of Spanish and
Spanish native speakers, Rossi and Prystauka (2020) investigated neural oscil-
latory activity associated with the processing of Spanish gender and number
(expressed via agreement on clitic pronouns), which is a structure unique
to the learners’ L2 Spanish and does not occur in English. Overall, the L2
learners and native speakers showed qualitatively similar oscillatory patterns:
power decreases in alpha and beta frequency bands for gender violations, in
the beta band for number violations, and in theta, alpha, and beta frequency
bands for combined gender and number violations (see Rossi & Prystauka,
2020, for a detailed exposition of possible cognitive processes associated
with power changes in the different bands). Importantly, L2 learners differed
from native speakers in the duration of these neural oscillatory effects in that
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van Hell Neurocognitive Underpinnings of L2 Processing

they persisted in native speakers and ceased earlier in L2 learners. Rossi and
Prystauka explained this difference in the time course of the neural oscillatory
signal in terms of a Hebbian cell assembly framework for language processing
(e.g., Hebb, 1949; Pulvermüller, 1996; Strijkers, 2016), which posits a biphasic
time course for activation of neural assemblies: a fast ignition phase (linked
to target identification) and a reverberation phase (linked to grammatical
reprocessing and verbal working memory). Rossi and Prystauka hypothesized
that differences between L2 learners and native speakers manifest them-
selves in the reverberation phase as decreased duration of the oscillatory
signal to morpho-syntactic violations in the L2 learners, possibly related to
a limited availability of working memory resources while processing in their
L2.

As a further example, Pérez et al. (2015) employed a complex network
analysis approach to study time-varying topographical properties of functional
networks as extracted from EEG data. This analysis is based on graph theory
and models the brain as a graph whose nodes represent different regions and
links connecting nodes represent functional (or structural) connections. Pérez
et al. presented Spanish sentences containing article–noun gender agreement
violations and their correct counterparts to highly proficient English–Spanish
bilinguals (all late L2 learners) whose accuracy in detecting article–noun gen-
der agreement violations in Spanish sentences was nearly perfect and equal to
native Spanish speakers. The complex network analysis yielded no differences
between bilinguals and native speakers on the correct sentences. However, for
L2 learners but not for native speakers, a lower degree of parallel information
transfer and a slower propagation between regions was found for incorrect rel-
ative to correct sentences. This indicated that even when highly proficient L2
learners’ accuracy scores are similar to native speakers, their neural network
activation pattern can be configured differently from that of native speakers.
This type of analysis is a promising avenue for gaining nuanced insights into
individual variation in L2 learning trajectories and variables that potentially
modulate brain network activation patterns associated with L2 syntactic pro-
cessing.

Revisit the Native-Speaker Benchmark for L2 Attainment
Weber-Fox and Neville’s (1996) seminal study and many subsequent neurocog-
nitive studies on grammatical processing in L2 learners considered, explicitly
or implicitly, native speaker performance as the ultimate goal and benchmark
of L2 learning. Typically, as also reviewed above, researchers compared L2
learners’ ERP patterns to native speaker ERP signatures to assess the extent
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van Hell Neurocognitive Underpinnings of L2 Processing

to which L2 learners’ performance was nativelike and whether the L2 learn-
ers’ grand average waveform was qualitatively and quantitatively comparable
to native speakers’ grand average waveform (Freunberger et al., 2022).

Adopting a native-speaker benchmark for L2 attainment is problematic in
multiple ways; this point also pertains to neuroimaging studies that used a
native-speaker benchmark to interpret L2 learners’ neural organization (see
the section Neuroimaging Studies on L2 Learning and Processing: Setting
the Stage). First, setting the native speaker as the gold standard basically em-
braces, and perpetuates, a deficiency model of L2 learning and bilingualism
(e.g., Cook, 2016). Second, L2 learners do not develop into native speakers
of their L2, but rather they develop as bilinguals and become bilingual speak-
ers of their L2 (e.g., Ortega, 2018). Ubiquitous evidence of coactivation of
the bilinguals’ two language systems during language processing entails that
bilinguals’ basic machinery is fundamentally different from that of (monolin-
gual) native speakers, and this may, or may not, materialize in differences in
performance. Indeed, if L2 learners show a nativelike P600 in response to a
grammatical violation, this does not necessarily imply that the L2 learners’
underlying neural activation patterns and their neurocognitive processing are
identical to those of native speakers (cf., Pérez et al., 2015). As I further dis-
cuss in the section Neural Regions Involved in L1 and L2 Processing: Role
of Age of Acquisition and L2 Proficiency, there is mounting evidence of L2
learning-induced structural changes in bilingual brains, that is, differences in
grey matter density and cortical thickness, as well as white matter integrity
between language areas, in bilingual versus monolingual brains. Third, there
is compelling evidence against the idealized notion of the native speaker pos-
sessing a complete and uniform language, whose performance can serve as
the gold benchmark of ultimate language attainment. This evidence has been
built up from empirical work employing behavioral measures as well as EEG
methodology (e.g., Grey et al., 2017; Pakulak & Neville, 2010; Tanner & Van
Hell, 2014). For example, testing monolingual native speakers, Tanner and Van
Hell (2014) observed that individuals’ ERP response profiles for grammatical
violations (subject–verb agreement and verb tense) varied between being ei-
ther negativity-dominant (more similar to an N400) and positivity-dominant
(more similar to an P600). That grammatical violations can elicit an N400 in
monolingual native speakers challenges the assumption that an N400 effect in
L2 learners reflects nonnativelike performance.

Researchers have learned in the past decades that L2 learning trajectories
are multifaceted, and research should embrace their complexity rather than
narrow these down to the perfect path toward the idealized native speaker.
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van Hell Neurocognitive Underpinnings of L2 Processing

Moving beyond the idealized native speaker and the native speaker benchmark
entails a paradigm shift in L2 research (for recent discussions, see the special
issue edited by Vulchanova et al., 2022; also see Rothman et al., 2022). I
highlight several approaches here realizing there is no perfect solution and
that these options are not always, and widely, available.2 For example, Ortega
(2018) argued we should “refuse to engage in subordinating comparisons and
nativespeakerism” (p. 13) and proposed that, if comparisons or benchmarks are
needed, a nonsubordinate option should be chosen, for example by comparing
sequential bilinguals who learned L2 at a later age with simultaneous bilingual
speakers of these same languages. Another approach is to compare L2 learners
against their native-speaking selves: Adopting a within-participant design
in L1 English learners of L2 Spanish, Grey (2023) compared group-based
and individual-based ERP processing profiles for semantic and grammatical
violations in their L2 Spanish with L1 English. A third example is to adopt a
language-experience perspective and use a spectrum of bilingual experiences
as regressors in the statistical design (discussed in more detail in the section
Bilingual Brain and Experience-Based Perspectives). Finally, longitudinal or
cross-sectional designs can be used to track the neural basis of L2 learners’
trajectories over time when they are learning a natural language or an artificial
language. Using such designs, researchers can also compare language learning
trajectories in different groups of learners to examine how specific learner
variables impact learning—with, in artificial or miniature languages, the
added bonus of maintaining experimental control over the nature of language
structures being studied, their (dis)similarity to participants’ known other
language(s), and the amount and type of language exposure.

Neuroimaging Studies on L2 Learning and Processing: Setting the

Stage

At around the same time that Weber-Fox and Neville (1996) published their
seminal ERP study, the first studies using neuroimaging techniques (PET or
fMRI) to investigate the neural regions involved in L1 and L2 processing in
bilinguals were published (Chee et al., 1999; Kim et al., 1997; Klein et al.,
1995; Perani et al., 1998). These first studies examined whether neural sub-
strates involved in L2 and L1 processing are the same, benefiting from techno-
logical advances to study this classical question (Paradis, 2004) under experi-
mentally controlled conditions rather than depending on experiments of nature
(as in lesion studies). Klein et al. (1995) asked French–English bilinguals who
had learned L2 English after the age of 5 years to generate a rhyme word, a
synonym, or the translation of a word presented in their L1 or their L2. Klein
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van Hell Neurocognitive Underpinnings of L2 Processing

et al. observed increased activity in the left inferior frontal and dorsolateral
prefrontal cortices in each generation task relative to the baseline condition (in
which a L1 or L2 word was repeated), irrespective of whether words were gen-
erated in L1 or L2, or within or across languages. There was no evidence that
L2 was represented differently from L1. Chee et al. (1999) reached a similar
conclusion for early and late Mandarin learners of L2 English.

A different conclusion was reached by Kim et al. (1997) and Perani et al.
(1998). Asking late and early bilinguals to silently generate speech in L1 or
L2, Kim et al. (1997) concluded that, for late bilinguals, the frontal cortical
language areas (most notably the left inferior frontal gyrus) were spatially
separated for L2 and L1, whereas for early bilinguals, L1 and L2 were more
likely to be represented in highly overlapping frontal cortical areas. Likewise,
in Italian late L2 English learners with moderate proficiency, Perani et al.
(1998) observed that listening to L1 Italian stories engaged the temporal lobes
and temporoparietal cortex more extensively than did listening to L2 stories.
However, when presenting similar tasks to Italian late L2 English learners
with higher proficiency and to proficient Spanish–Catalan early bilinguals,
Perani et al. found no differences in neural areas activated for L1 and L2. On
the basis of these combined findings, Perani et al. concluded that attained L2
proficiency is a stronger determinant of L2 cortical representation than is AoA.

These initial and groundbreaking neuroimaging studies opened up multi-
ple lines of research, recently examined through meta-analyses, on bilingual
brain organization and neural regions involved in L1 and L2 processing (for
review, see Sulpizio et al., 2020; see the section Bilingual Brain Organiza-
tion and Neural Regions Involved in L1 and L2 Processing) and the impact of
AoA and L2 proficiency on language representation in the bilingual brain (for
review, see Cargnelutti et al., 2019; see the section Neural Regions Involved
in L1 and L2 Processing: Role of Age of Acquisition and L2 Proficiency);
these studies examined bilinguals who had learned their L2 at some point ear-
lier in life, typically at home or at school. Another line of research examined
the neural correlates of lexical and grammatical learning under experimentally
controlled learning conditions, typically in the laboratory, using stimuli such
as pseudowords, artificial grammars, or miniature languages (for review, see
Tagarelli et al., 2019; see the section Neuroanatomical Substrates of Lexical
and Grammar Learning).
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van Hell Neurocognitive Underpinnings of L2 Processing

Bilingual Brain Organization and Neural Regions Involved in L1 and L2
Processing
Sulpizio et al. (2020) conducted a comprehensive meta-analysis on neuroimag-
ing data published between 1995 and 2018 to identify the neural areas that
are associated with bilinguals’ processing of phonology, lexicosemantics, and
grammar in L1 and L2. Out of the original set of over 700 articles, their meta-
analysis was ultimately based on 52 peer-reviewed papers that reported activa-
tion for L1 > L2 or L2 > L1 in highly proficient adult bilinguals. Overall, the
analysis showed that L1 and L2 processing engages similar neural structures,
as little evidence for extensive selective activation for either L1 or L2 was ob-
tained. Notwithstanding this general pattern, different patterns were observed
for the three linguistic levels, in particular for lexicosemantic processing com-
pared to phonological and grammatical processing. Lexicosemantic processing
in L1 showed a widespread activation pattern of cortico-subcortical regions
(cortical: bilateral inferior frontal gyrus, left medial frontal gyrus, left middle
temporal and parahippocampal gyri, left precuneus, bilateral superior and left
inferior parietal lobules, right angular gyrus, right fusiform gyrus, left poste-
rior cingulate, and left superior occipital gyrus; subcortical: left thalamus, left
amygdala, right caudate head) that aligns with the semantic network identi-
fied by meta-analyses on monolingual language processing (e.g., Binder et al.,
2009). Lexicosemantic processing in the L2 yielded activation of regions that
exceeded the classical semantic network and also included regions associated
with cognitive control-related functions (bilateral globus pallidus [part of the
basal ganglia], right insula, and right cerebellum), such as selective attention
and monitoring that may support the processing of semantic information in L2.

In contrast, grammar processing in L1 and L2 involved largely similar
neural structures in L1 and L2, and this pattern was also found for phono-
logical processing. More specifically, grammar processing in L1 and L2
mainly engaged frontal/basal ganglia networks that have been associated with
procedural-related circuits (and no involvement of medial temporal structures
more associated with declarative memory, cf. Ullman’s declarative/procedural
model, e.g., Ullman, 2020). Phonological processing in both L1 and L2 in-
volved frontal regions (more widespread for L2), that is, regions that are key
components of the dorsal pathway in dual-stream models of speech process-
ing (e.g., Hickok & Poeppel, 2007; Saur et al., 2008) and that are involved in
translating acoustic speech signals into articulatory representations.
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van Hell Neurocognitive Underpinnings of L2 Processing

Neural Regions Involved in L1 and L2 Processing: Role of Age of
Acquisition and L2 Proficiency
Another recent meta-analysis on neural structures recruited during L1 and L2
processing in bilinguals focused specifically on the impact of AoA and L2 pro-
ficiency on language representation in the bilingual brain (Cargnelutti et al.,
2019). This meta-analysis included 57 peer-reviewed studies (reporting 74 ex-
periments with 1,048 participants in total) on lexicosemantic, phonological,
and grammar processing (unlike Sulpizio et al., 2020, these domains were not
analyzed separately). Separating early from late bilinguals (L2 AoA at age 6
years or later), this analysis showed that in both early and late bilinguals the
classical left-hemisphere language areas were involved in both L1 and L2 pro-
cessing, as well as regions supporting general executive functions (including
left presupplementary motor area and dorsolateral prefrontal cortex). Impor-
tantly, during L2 processing, the neural areas activated in late bilinguals were
more widespread than in early bilinguals, for language areas (including the
inferior frontal gyrus and pars orbitalis, left superior temporal gyrus, and left
inferior and superior parietal lobes), and for areas related to control and ex-
ecutive functions (left presupplementary motor area, anterior cingulate cor-
tex, dorsolateral prefrontal cortex, and bilateral insula), the right cerebellum,
and some right hemisphere posterior areas in the occipital cortex and angular
gyrus. Interestingly, L1 processing also recruited more widespread neural areas
in late than in early bilinguals. A subsequent analysis that included only data of
highly proficient early and late learners (to remove the possible confound with
L2 proficiency in the overall analysis) paralleled the finding that L2 processing
activated more widespread areas in late than in early bilinguals.3

Neuroanatomical Substrates of Lexical and Grammar Learning
The above studies examined the neural correlates of processing naturally
learned languages (e.g., learned at home or at school) that generally take years
to acquire. A different, and quite popular approach is to model the longer-
term trajectory of natural language learning under experimentally controlled
learning conditions through the use of artificial linguistic stimuli and systems
(e.g., pseudowords or artificial grammars) or miniature language systems (e.g.,
foreign-language words; see Ettlinger et al., 2016; Morgan-Short, 2020). Un-
like natural languages, these artificial/miniature language stimuli are learnable
within a short period of time and can be experimentally controlled for the
nature of the stimuli (e.g., Chen et al., 2021) and training (e.g., Batterink &
Neville, 2013; Morgan-Short et al., 2010) as well as for the amount and timing
of exposure to the learner (e.g., Bakker-Marshall et al., 2021; Takashima et al.,
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van Hell Neurocognitive Underpinnings of L2 Processing

2014; Weber et al., 2016). Tagarelli et al. (2019) conducted a meta-analysis of
46 peer-reviewed studies (entailing 60 participant groups and 769 adult partic-
ipants selected out of 251 papers) that examined the neural correlates of lex-
ical and grammatical learning in experimentally controlled language training
studies using PET or fMRI techniques. The analysis demonstrated overlapping
neural activation for lexical and grammar learning in the frontal and parietal
cortices. More specifically, overlapping activation was found bilaterally in and
around the inferior frontal gyrus (including the pars opercularis and pars trian-
gularis), the precentral gyrus, the anterior insula, as well as the supplementary
motor area (more dorsal and posterior for lexical learning, and more ventral
and anterior for grammar learning). Lexical and grammar learning also in-
volved the left posterior parietal lobe, including the superior parietal lobule
and the angular gyrus of the inferior parietal lobule.

The analyses further indicated that the ventral occipito-temporal cortex is
particularly involved in lexical learning, in particular the left inferior temporal
gyrus and the left fusiform gyrus. These areas in the inferior temporal and oc-
cipital lobes are part of the ventral pathway in dual-stream models of speech
processing (e.g., Hickok & Poeppel, 2007; Saur et al., 2008) that has been pro-
posed to be particularly important for mapping sounds to meanings and thus
critical for lexicosemantic learning and processing. Finally, grammar learning,
but not lexical learning, engaged the left caudate nucleus and left anterior puta-
men, parts of the basal ganglia. The basal ganglia have been widely associated
with procedural learning functions (e.g., Kreitzer & Malenka, 2008) that in
turn have been proposed to underlie grammatical learning in Ullman’s declara-
tive/procedural model (e.g., Ullman, 2020; see Tagarelli et al., 2019, for further
discussion how the meta-analysis outcomes support this model).

Neuroimaging Studies: Current Status and Future Directions

As I reviewed in the section Neuroimaging Studies on L2 Learning and
Processing: Setting the Stage, the early PET/fMRI studies that explored
the organization of the bilingual brain have inspired a wealth of studies
that provided valuable insights into the functional areas associated with L2
learning and processing. How variability in AoA and L2 proficiency impact
the neural underpinnings of L2 learning and processing has been, and still
is, a major focus in fMRI research. Parallel to the upsurge of functional
neuroimaging studies over the past decades (reviewed in the sections Bilingual
Brain Organization and Neural Regions Involved in L1 and L2 Processing,
Neural Regions Involved in L1 and L2 Processing: Role of Age of Acquisition
and L2 Proficiency, and Neuroanatomical Substrates of Lexical and Grammar
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van Hell Neurocognitive Underpinnings of L2 Processing

Learning), the field has seen other significant advances that inform the neural
underpinnings of L2 learning and processing. Next, I briefly outline three
topics (selected out of many possible topics) that build on and extend these
insights, and that bear promising avenues for future neuroimaging research:
(a) neural network approaches, (b) structural MRI studies, and (c) bilingual
experience-based approaches.

Neural Network Approaches
In the past decade, neuroimaging studies of language gradually shifted from
describing the function of specific brain regions to identifying the spatial and
temporal dynamics of functional networks that connect different brain regions
(Bressler & Menon, 2010). This shift has also led to neural network paradigms
becoming increasingly applied to L2 learning and processing (Kousiae &
Klein, in press; see Li & Xu, 2023, for a review of computational modeling in
L2 processing and learning). An attested method for characterizing neural net-
works is to establish resting-state functional connectivity that is considered to
reflect intrinsic functional organization of the brain (e.g., Fox & Raichle, 2007).
More specifically, resting-state fMRI (rs-fMRI) determines the functional con-
nections between anatomically distant neural areas at rest, that is, when the
participant does not engage in task-driven behavior. Of the neural networks
that have been identified using rs-fMRI, two have been specifically associated
with language processing, including L2 processing: the language network (e.g.,
Fedorenko & Thompson-Schill, 2014; Friederici, 2017; Hertrich et al., 2020)
and the default-mode network (Fox & Raichle, 2007; Gordon et al., 2020).

Resting-state fMRI for determining the functional connectivity between
neural areas has become increasingly used in L2 learning and bilingualism
research (e.g., Berken et al., 2016; Chai et al., 2016; Claussenius-Kalman
et al., 2020; Liu et al., 2017; Sulpizio et al., 2020; Veroude et al., 2010; for
an EEG-based resting-state connectivity approach, see, e.g., Bice et al., 2020;
for a structural connectivity approach using diffusion tensor imaging, see, e.g.,
Rossi et al., 2017). For example, Veroude et al. (2010) assessed functional
connectivity before and after presenting a weather report movie in Chinese
to Dutch participants (who reported no knowledge of Chinese). Based on an
auditory old–new word recognition task presented after the weather report,
participants were divided into two groups: nonlearners and learners (whose
d-prime scores showed some sensitivity to distinguishing new Chinese words
from previously heard Chinese words). After exposure to the Chinese weather
report, functional connectivity between the left and right supramarginal gyrus
was stronger for learners than for nonlearners, consistent with a role of the left
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van Hell Neurocognitive Underpinnings of L2 Processing

supramarginal gyrus in the storage of phonological forms (pretraining, the cor-
relation between these areas was similar for both groups; see Chai et al., 2016,
who used rs-fMRI pretraining to predict learner-differences in learning out-
comes following a 12-week intensive language learning). Comparing highly
proficient simultaneous and sequential bilinguals (learned L2 after the age of
5 years), Berken et al. (2016) used a seed-based rs-fMRI approach to exam-
ine the functional connectivity profile of the inferior frontal gyrus (IFG), a key
structure implicated in L2 processing (see the section Neural Regions Involved
in L1 and L2 Processing: Role of Age of Acquisition and L2 Proficiency).
Compared to sequential bilinguals, simultaneous bilinguals had stronger func-
tional connectivity between the IFG in left and right hemispheres, as well as
between the IFG and brain areas implicated in language control (including dor-
solateral prefrontal cortex, inferior parietal lobule, and posterior cerebellum).
Moreover, connectivity between left and right IFG and right inferior parietal
lobule correlated negatively with AoA in sequential bilinguals—the earlier L2
was acquired, the stronger the resting state connectivity. Greater resting state
functional connectivity between left and right IFG was also associated with
reduced neural activation in left IFG during speech production, interpreted to
reflect greater neural efficiency in the IFG. Berken et al. (2016) concluded that
the degree of functional connectivity within the language control network is
shaped by age of L2 acquisition, indicating that the bilingual brain’s intrinsic
functional patterns are influenced by the developmental timeline of L2 learn-
ing.

Other recent neural network approaches that are promising to provide novel
insights into the bilingual brain include (but are not restricted to) the use of
localizer tasks to functionally characterize language regions in the brain on
an individual level (Jouravlev et al., 2021) and network science approaches
that use a data-driven quantitative approach to modeling language structure
(Zaharchuk & Karuza, 2021).

L2 Learning and Structural Changes in the Brain
The past decade has also seen a surge of evidence that L2 learning and usage
are accompanied by structural changes in the brain. Such structural changes
can be examined via cortical thickness and shape and/or volumetric changes in
grey matter in cortical and subcortical regions involved in language learning,
processing, and control as well as in changes in the diffusivity of white matter
tracts connecting these regions. Much of the evidence on neuroplasticity and
structural changes associated with L2 learning in adults comes from training
studies and longitudinal studies (for reviews, see DeLuca et al., 2019; Li et al.,
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van Hell Neurocognitive Underpinnings of L2 Processing

2014; for review of transcranial stimulation techniques applied to enhance L2
learning, see Balboa-Bandeira et al., 2021). As reviewed by Li et al. (2014),
structural changes in the brain are mirrored by functional neural patterns
shown in fMRI studies. More specifically, L2 learners with substantial L2
learning experience, through formal instruction or laboratory-based training
studies, generally show increases in grey matter volume and/or density in cor-
tical and subcortical areas that fMRI studies have identified as being involved
in language learning and processing (the left hemisphere inferior frontal gyrus,
middle frontal gyrus, superior temporal gyrus, anterior temporal lobe, and
inferior parietal lobule, the right hemisphere hippocampus and cerebellum,
and the left/bilateral caudate nucleus) and language monitoring and control
(frontal-stratial network in the left hemisphere involving the inferior frontal
gyrus, anterior cingulate cortex, inferior parietal lobule, and caudate nucleus).
For example, Mårtensson et al. (2012) tested students enrolled in an intensive
language training. Compared to a control group of nonlearners (matched in
age and cognitive abilities to the learners), after three months of training,
the learners showed increased cortical thickness in language-related regions
in the left hemisphere fronto-temporal cortex (inferior and middle frontal
gyrus, and superior temporal gyrus), as well as increased right hippocampal
volume (hippocampal changes are linked to language learning and memory;
Davis & Gaskell, 2009; Takashima et al., 2014). Moreover, learners who had
attained higher proficiency levels showed increased cortical thickness in the
left superior temporal gyrus and right hippocampus, which Mårtensson et al.
suggested may indicate that plasticity of these brain regions (higher structural
malleability) relates to language learning talent.

These and related findings on L2 learning/bilingualism-induced neuro-
plasticity are captured in Pliatsikas’s (2020) dynamic restructuring model that
classifies bilingualism-induced effects in neural plasticity into three stages of
language learning and use that are each associated with distinct structural
changes: initial exposure, consolidation, and peak efficiency (for recent re-
views, see Kořenář & Pliatsikas, in press, and Abutalebi & Green’s, 2016, up-
dated language control model).

Finally, the literature on structural changes in the brain induced by L2
learning raises the question of whether these structural neural changes are re-
flected in functional neural patterns within the same individual. So far, few
studies on L2 learning have used multimodal brain imaging methods within the
same participants to explore functional and structural neuroplasticity associ-
ated with L2 learning (for exception, see, e.g., Wang et al., 2020). Multimodal
imaging studies (combining task-based fMRI, rs-fMRI, and/or structural MRI
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van Hell Neurocognitive Underpinnings of L2 Processing

within the same learners) are obviously resource-demanding but will also be
an important step forward for revealing L2-learning related neural changes and
for significantly enhancing understanding of brain dynamics and neural plas-
ticity associated with L2 learning.

Bilingual Brain and Experience-Based Perspectives
The surge of studies on L2 learning and brain plasticity has been paralleled by
an increased conceptualization of bilingualism as a gradient measure. Rather
than describing bilinguals along the dimensions of AoA or L2 proficiency,
researchers have increasingly called for taking a more holistic experience-
based perspective that not only includes AoA and L2 proficiency but also
current language use, environmental context (including immersion), quality
and quantity of switching between languages, language dominance rather than
L1 versus L2, and the like (e.g., Beatty-Martínez & Titone, 2021; Gullifer
et al., 2018; Litcofsky & Van Hell, 2017; Marian & Hayakawa, 2021; Navarro-
Torres et al., 2021; Pliatsikas et al., 2020; Sulpizio et al., 2020). Relatedly,
acknowledging that variation among bilinguals in terms of learner-internal
and learner-external variables yields variable L2 learning outcomes and pro-
cessing strategies, researchers have increasingly shied away from categorizing
bilinguals into dichotomous groups (e.g., early vs. late bilinguals; low-
proficiency vs. high-proficiency L2 learners). For example, Gullifer, Titone,
and colleagues introduced the construct of language entropy for measuring
individual differences in the social diversity of language use, emphasizing the
communicative context of language use (e.g., Gullifer et al., 2018); the en-
tropy value increases with a more balanced, and higher diversity of, language
use. Using seed-based resting state functional connectivity, Gullifer et al.
(2018) observed that language entropy modulated resting-state connectivity
for a widespread set of neural regions: Functional connectivity between the
anterior cingulate cortex and bilateral putamen and between the left caudate
and bilateral superior temporal gyrus was stronger for bilinguals with higher
social diversity of using their two languages (i.e., higher entropy score). As
these areas have been implicated with cognitive control, attention, and conflict
managing (e.g., Abutalebi & Green, 2016; Blanco-Elorrieta & Pylkkänen,
2018), Gullifer et al. interpreted these findings as implying that higher (vs.
lower) degrees of diversity in social language use are related to a broadly
distributed set of neural networks implicated in proactive control and context
monitoring.
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van Hell Neurocognitive Underpinnings of L2 Processing

Future Avenues of Research: Some Questions and Desiderata

Since the early EEG and neuroimaging studies on L2 processing were pub-
lished in the mid to late 1990s, thousands of neurocognitive studies on L2
learning and bilingual processing have been published—I have reviewed only a
fraction of this literature. Are there any remaining, or underexplored, questions
to address in the coming decade? Yes, many! In this final section I highlight a
few (out of many!) avenues for further research.

Increase Linguistic Diversity in Neurocognitive Research
Decades of neurocognitive studies yielded important insights into the neural
underpinnings of L2 processing—but only for a fraction of the world’s lan-
guages and for a narrow sample of the world’s L2 learners. As an illustra-
tion, only 16 languages were tested as L1 or L2 in the studies included in
Sulpizio et al.’s (2020) meta-analysis that spanned two decades of fMRI re-
search: English, German, Dutch, Swedish, Finnish, Spanish, French, Italian,
Ladin, Catalan, Basque, Russian, Macedonian, Chinese, Japanese, and Korean
(with Ladin, Macedonian, Russian, and Basque tested in one study). Notably
absent are the hundreds of different languages spoken in (profoundly multilin-
gual) continents, including Africa, Asia, and Central-South Americas, as well
as signed languages (beyond American and British signed languages; Emmory
et al., 2016; MacSweeney et al., 2008; cf. Li et al., 2015) and indigenous lan-
guages (cf. Blasi et al., 2022). In profoundly multilingual societies such as on
the African continent, speakers have learned different languages at different
ages, for varied purposes, and in different settings. Importantly, rather than
testing whether insights accrued from testing L2 learners and bilinguals living
in the United States or Europe generalize to other populations (an approach
often taken in attempts to globalize research efforts, Adetula et al., 2022), re-
searchers should examine language learning and processing in these multilin-
gual contexts and transfer these newly acquired insights to transform research
on L2 learning and processing.

Enhance Ecological Validity of Neurocognitive Research
Traditionally, neurocognitive research has been conducted under well-
controlled conditions in the laboratory, which challenges the ecological valid-
ity of research outcomes. Despite constraints imposed by scanning equipment,
efforts have been made to enhance the ecological validity of neurocognitive
research, and these efforts have also entered the field of L2 learning and pro-
cessing. This has included efforts to create more naturalistic stimulus materials
(e.g., Alemán Bañón & Martin, 2021; Blanco-Elorrieta & Pylkkänen, 2018),
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van Hell Neurocognitive Underpinnings of L2 Processing

to measure brain activity in mimicked real-life settings such as noisy envi-
ronments (e.g., Rammell et al., 2019) or interactive discourse situations (e.g.,
Kaan et al., 2020), and to apply neurocognitive techniques in field settings or in
the L2 learning classroom (Van Hell, 2020). For example, presenting English
learners of L2 Spanish with Spanish and English sentences in noisy or in quiet
conditions, Rammell et al. (2019) observed an increase in activation in auditory
perceptual processing regions, in particular the posterior superior temporal sul-
cus, for L2 Spanish sentences in noise, whereas they observed no increase in
activation related to perceptual processing for L1 English sentences presented
in noise. Furthermore, Kaan et al. (2020) observed that the speaker identity
of a silent bystander (who presented themself as a monolingual or bilingual
speaker) affected the neural responses associated with bilinguals’ reading of
code-switched sentences. These studies indicated that neural correlates associ-
ated with bilinguals’ language processing can be different when tested in more
naturalistic settings.

In addition, despite the extensive behavioral literature on L2 instruction,
researchers know relatively little about the impact of various instruction
methods (beyond work on implicit and explicit learning, see the section Age
of Acquisition or L2 Proficiency?), study abroad versus classroom learning
(Faretta-Stutenberg & Morgan-Short, 2018), or the nature of feedback and
reinforcement (Bultena et al., 2017) on the neural correlates of L2 learning.
Finally, an ecological reality of L2 learning and neural plasticity is forgetting
and attrition, and future research may expand current (but still limited) knowl-
edge on the neural dynamics of language attrition (e.g., Bergmann et al., 2015;
Steinhauer & Kasparian, 2020).

Intensify Research on Child L2 Learners’ Brains
Since Science wondered why “children pick up languages with ease while
adults often struggle to learn train station basics in a foreign language”
(Kennedy & Norman, 2005, p. 93), and in their quest for monitoring brain
activity to understand the biological basis of L2 learning, researchers have
gained significant insights into why learning foreign languages is challenging
for adults and into variables that modulate such challenges. However, the past
decades of neurocognitive research paid substantially less attention to why
“children pick up languages with ease” (and whether that is even true) and the
developing bilingual brain. There has been work on the neural basis of speech
perception and phonological development in infants growing up with two lan-
guages (e.g., Ferjan Ramírez et al., 2017; for review, see Ortiz Villalobos et al.,
in press) but a smaller literature on the neural correlates of children’s L2 lex-
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van Hell Neurocognitive Underpinnings of L2 Processing

ical (e.g., Conboy & Mills, 2006; Ojima et al., 2005; Sirri & Rämä, 2019) and
syntactic (e.g., Arredondo et al., 2019; Ip et al., 2017; Jasinska & Petitto, 2013)
learning and processing. For example, using fNIRS neuroimaging, Arredondo
et al. (2019) tested Spanish–English bilingual and English monolingual
children (aged 8–11 years) who listened to correctly structured sentences
and sentences with errors on earlier-acquired morphemes (bake + ing) and
later-acquired morphemes (bake + ed/s). Both bilingual and monolingual
children displayed greater left IFG activation for later- than earlier-acquired
morphemes. Importantly, bilingual children showed more adultlike patterns of
neural activity than did monolingual children, that is, more focal activity in left
IFG, whereas monolingual children displayed a more distributed and bilateral
pattern of frontal lobe activation. Arredondo et al. suggested that, as Spanish
has a richer morphosyntactic structure than English, bilingual children may at-
tend more to morphosyntax in English than do monolingual English children,
in line with crosslinguistic transfer. Furthermore, although less proficient in
Spanish, the bilingual children also displayed greater left frontal activation
for later- versus earlier-acquired morpheme errors in Spanish sentences.
Together these findings indicated that, relative to monolinguals, bilingual
children’s dual-language experience may advance neural specialization and
the functionality of the left IFG to support more diverse linguistic input.

There is also an emerging literature on the effects of bilingualism on chil-
dren’s brain structure (e.g., Archilla-Suerte et al., 2018), including studies that
have tracked the developmental trajectories of bilingualism-induced changes
in brain structure using longitudinal (Mohades et al., 2015) or cross-sectional
(Pliatsikas et al., 2020) designs. Notwithstanding the fascinating studies in-
dicating that the systematic use of two languages during the critical years of
neural plasticity may enhance neural computational abilities for language pro-
cessing, researchers still have a lot to learn about the developing bilingual
brain. This includes critical questions on how simultaneous and sequential
bilingual language experiences modulate the neurodevelopmental course of
language processing and organization in the young bilingual brain, whether
and how crosslinguistic transfer optimizes bilingual children’s neural system,
and the extent to which bilingual children’s neurodevelopmental trajectories
differ qualitatively and/or quantitatively from those of their monolingual peers.

Epilogue

In the past decades, neurocognitive studies have yielded tremendous insights
into the neural basis of L2 learning and processing and paved the way for
inspiring new questions. Alongside the explosion of research and the advance-

Language Learning 0:0, June 2023, pp. 1–44 28

 14679922, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/lang.12601, W

iley O
nline L

ibrary on [09/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



van Hell Neurocognitive Underpinnings of L2 Processing

ment of neurocognitive techniques, the field has educated a cohort of capa-
ble researchers, often bilingual themselves, who have been trained to conduct
high-quality research on bilingualism and the brain. Reaching maturity without
losing curiosity, this flourishing field is therefore strongly positioned to break
new ground on the neurocognitive underpinnings of L2 processing.

Final revised version accepted 4 June 2023

Notes

1 Although several recent meta-analyses have synthesized bilingual fMRI data (see
the section Neuroimaging Studies on L2 Learning and Processing: Setting the
Stage), aside from Caffarra et al.’s (2005) logistical regression analyses, to my
knowledge, no meta-analysis has been published in this specific domain.

2 This does not imply that testing a native speaker group is never useful. In fact,
native speaker data can be important for validating experimental designs, materials,
and procedures. For example, if L2 learners do not show sensitivity to a particular
manipulation, native-speaker data can help verify this is not due to methodological
issues (e.g., flaws in stimulus materials) or an underpowered design.

3 The neuroimaging studies included in Cargnelutti et al.’s (2019) and Sulpizio et al.’s
(2020) meta-analyses were more concerned with lexicosemantic processing than
with grammar or phonological processing. This gap is relevant, as AoA effects have
been argued to be particularly pronounced in the development of phonology and
grammar (e.g., Mayberry & Kluender, 2018). Therefore, future fMRI research may
focus more on how bilinguals process phonology and grammar in their L1 and L2
and on how variability in AoA and L2 proficiency impact the neural underpinnings
of phonological and grammar processing.
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