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H I G H L I G H T S

• A two-step process was used to pro-
duce bioelectricity using methane as a
substrate.

• In the first step, methane-oxidizing
culture oxidizes methane to methanol.

• In the second step, the MFC is supplied
with methanol to generate power.

• Acetogens converted methanol into
acetate, which was consumed by
exoelectrogens.

• Power is generated without the need
for engineered strains or aseptic tech-
niques.

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O

Keywords:
Methane
MFC
Methanol
Acetogens
Bioelectricity
Methanotrophs

A B S T R A C T

Methane is an abundant and inexpensive feedstock that is available as natural gas and renewable biogas.
However, methane has not been regarded as a good substrate for microbial fuel cells (MFCs) due to low power
densities. To increase power, a two-step strategy was used based on conversion of methane into methanol,
followed by electricity generation using methanol as the substrate in the MFC. To produce methanol, a methane-
oxidizing culture was grown in a high phosphate buffer resulting in the accumulation of 350 ± 42mg/L of
methanol. The methanol-fed MFC produced a maximum power density of 426 ± 17mW/m2. It was also shown
that the methanol-rich medium produced from the first step can directly be supplied to the MFCs, removing the
need for purification of methanol. Analysis of the microbial community suggests that acetogens first converts
methanol into acetate, which is then consumed by exoelectrogens for power generation.

1. Introduction

A microbial fuel cell (MFC) is a technology for harvesting electricity
directly from organic matter, and thus it has great potential for treating
wastewater economically without the use of energy derived from fossil
fuels [1–3]. A variety of substrates can be used in MFCs for electricity
production ranging from pure compounds such as acetate [4–7],

propionate [7], butyrate [4,7], glucose [6,8,9], ethanol [10], and xylose
[6,11,12], to complex mixtures of organic matter present in wastewater
[13–19]. However, few gaseous substrates have been examined other
than hydrogen or methane [20–23].

Methane is a readily available from both natural and anthropogenic
sources, and is a feedstock that does not compete with food demands
[24]. Methane-utilizing bacteria (methanotrophs) have been used to
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convert methane into various bioproducts including biodiesel [25],
propylene oxide [26], single cell protein [27,28], extracellular poly-
saccharides [29], human health supplements [30], and poly-
hydroxyalkanoate (PHA) bioplastics [31–36]. Use of methane as a
substrate for electricity production in MFCs, however, has not been well
examined. Electricity was produced first from methane using an un-
cultured anaerobic methane-oxidizing consortia isolated from oceanic
sediment, but the power density was very low (0.65mW/m2) [37]
compared to organic substrates such as acetate [38]. A recent study
reported that an air-cathode MFC operated in continuous mode on a
synthetic, methane-saturated medium generated approximately
62mW/m2 [20]. So far, the highest power density using a methane-
powered MFC of 168mW/m2 was obtained using a genetically en-
gineered archaeal strain that was capable of converting methane into
acetate, which was then oxidized by exoelectrogens to generate elec-
tricity [21].

In this study, we examined a two-step process to utilize methane as
a feedstock for bioelectricity generation based on enriching a natural
microbial consortium with aerobic methanotrophs in the first step to
oxidize methane to methanol. In the second step, the produced me-
thanol solution was used in an MFC to produce bioelectricity from the
methanol using a mixed-culture community. Methanotrophs use me-
thane as a carbon and energy source, but are not known to be capable of
electricity generation [39,40]. However, methanotrophs can convert
methane to methanol using methane monooxygenase (MMO) enzymes
that catalyze the single-step conversion of methane into methanol,
which is then metabolized by methanotrophs to formaldehyde using
methanol dehydrogenase (MDH), and finally formaldehyde is converted
to formate by formaldehyde dehydrogenase. The accumulation of me-
thanol can be achieved using various MDH inhibitors such as phosphate
buffer, ethylenediaminetetraacetic acid (EDTA), sodium chloride
(NaCl), and ammonium chloride (NH4Cl) [41]. Here we examined the
use of a phosphate buffer as a simple method to readily convert me-
thane into methanol, with the methanol used in an MFC to produce
bioelectricity by a mixed microbial exoelectrogenic and fermentative
consortium.

2. Materials and methods

2.1. Methane-oxidizing cultures

All methane-oxidizing cultures were grown in 2.38 g/L (25mM) of a
phosphate buffer solution (PBS; contained the following chemicals per
liter of solution: 2.283 g Na2HPO4, 1.226 g NaH2PO4·H2O, 0.155 g
NH4Cl, 0.065 g KCl) amended with 12.5 mL/L minerals and 5mL/L
vitamins [42]. Activated sludge was obtained from the aeration basin at
the Penn State University Wastewater Treatment Plant (State College,
PA, USA). Large particles were removed by filtration through a 100-μm
pore-diameter cell strainer (BD Falcon Biosciences, Lexington, TN,
USA). The dispersed cells were centrifuged (10,000×g) for 5min to
produce a pellet, resuspended in 50mL of PBS medium, and then
shaken to disperse the cells. Cell suspensions were incubated in 160mL
serum bottles (Wheaton, Millville, NJ, USA) capped with thick butyl-
rubber stoppers and crimp-sealed under a CH4:O2 headspace (molar
ratio 1:1.5,> 99% purity). Cultures were incubated horizontally on
orbital shaker tables at 150 revolutions per minute (rpm) at 30 °C. The
headspace of each bottle was flushed daily with a CH4:O2 mixture
(molar ratio of 1:1.5), and every 48 h, 40mL of the suspensions were
replaced with 40mL of fresh PBS medium. The methane-oxidizing en-
richments were allowed to reach a steady-state condition (based on
their maximum cell densities) for the first 16 d, and data were collected
starting on day 17. In order to find the concentrations of phosphate and
ammonium that resulted in the maximum methanol concentrations, the
methane-oxidizing enrichment was subjected to a PBS medium con-
taining different concentrations of phosphate (0, 2.0, 4.0, 6.0, 8.0, 10.0,
12.0g PO4/L) and ammonium (34, 68, 102, 136, 170, 255, 340mg NH3-

N/L).

2.2. MFC construction and operation

MFC tests were conducted in triplicate using single-chamber, cubic-
shaped air-cathode MFC reactors containing a cylindrical anode
chamber 4-cm long and 3-cm in diameter [43]. The graphite fiber brush
anode (2.5 cm in both diameter and length) was heat treated at 450 °C
in air for 30min before use and was placed horizontally in the middle of
MFC chambers. Cathodes were prepared using a hot-pressing method as
previously described [44]. The catalyst layer was prepared by mixing
activated carbon (AC, Norit SX plus, Norit Americas Inc., TX, USA) with
a 60% polytetrafluoroethylene (PTFE) emulsion (Sigma Aldrich, MO,
USA) at a mass ratio of AC:PTFE (6:1). The cathode current collector
was a stainless steel mesh (42×42, type 304, McMaster-Carr, IL, USA).
A hydrophobic polyvinylidene fluoride (PVDF) membrane (0.45 μm,
Millipore, MA, USA) was used as a diffusion layer to prevent water
leakage. The AC:PTFE, current collector and diffusion layer were
pressed at 3×107 Pa for at least 15 s at 60 °C until the membrane
surface became dry [44,45]. The pressed cathodes were then taken out
and dried in a fume hood for later use.

Reactors were inoculated using anaerobic sludge collected from the
Penn State University Wastewater Treatment Plant and operated in
batch mode (State College, PA, USA), with a 1000Ω resistor in the
circuit. The MFCs were emptied and refilled daily with a fresh 8.0 g/L
PBS medium amended with 320mg/L methanol, 12.5mL/L minerals,
and 5mL/L vitamins for 30 d until the reactors reached steady state
based on repeatable cycles of voltage production. In some tests, MFCs
were refilled with a methanol-rich medium produced from the me-
thane-oxidizing reactors instead of the PBS medium.

Voltage (U) across the external resistor in the MFC circuit was
measured at 20min intervals using a data acquisition system (2700,
Keithley Instrument, OH, USA) connected to a personal computer.
Current (I=U/R) and power (P= IU) were calculated as previously
described [2], and normalized by the projected surface area of the
cathode (7 cm2). Power density curves were obtained by varying ex-
ternal circuit resistance using the single cycle polarization method, with
a single resistor used for a full batch cycle. An Ag/AgCl reference
electrode (BASi) was placed in the middle of the MFC chamber to ob-
tain anode potentials (reported versus Ag/AgCl electrode, +210mV vs.
a standard hydrogen electrode), with the cathode potential calculated
using the anode potential and the whole cell voltage. Coulombic effi-
ciency (εc) was calculated by dividing the total coulombs transferred to
the anode by the theoretical maximum number of coulombs (total
coulombs produced by complete methanol oxidation to carbon di-
oxide).

2.3. Analytical methods

The gas composition of methane-oxidizing reactors were analyzed
using a gas chromatograph (SRI Instruments, models 8610B and 310,
CA, USA) as previously described [46].

Methanol and acetate concentrations were analyzed using a gas
chromatograph (Agilent, model 6890, CA, USA) equipped with a FID
and a DB-FFAP fused-silica capillary column with helium as carrier gas
(constant pressure of 103 kPa). The oven temperature of the GC was
started at 60 °C and programmed at 20 °C/min to 120 °C, and then
30 °C/min to a final temperature of 240 °C held constant for 3min. The
injector and detector temperature were both 250 °C [42].

To analyze total suspended solids (TSS), 0.5–5.0 mL of cell suspen-
sion was filtered through pre-washed, dried, and pre-weighed 0.2 μm
pore-diameter membrane filters (Pall, Port Washington, NY, USA). The
filtered cells and membrane filters were dried at 105 °C for 24 h, then
weighed.

For all data, arithmetic mean values and standard deviations were
calculated for triplicate samples. Statistical differences between sample
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means were tested using the Welch's t-test for unpaired samples. The p-
value was used to evaluate significance, with differences defined as
significantly different for p≤ 0.05.

2.4. Microbial community analyses

Microbial communities of methane-oxidizing reactors and me-
thanol-utilizing MFCs were characterized using Illumina sequencing of
16S rRNA genes. DNA was extracted from the liquid suspensions (me-
thane-oxidizing reactors) and biofilm (methanol-utilizing MFCs) using
the MO Bio PowerSoil DNA extraction kit (QIAGEN, Germany) fol-
lowing the manufacturer’s protocols. PCR was performed on the iso-
lated DNA using the 515F/805R primer set. Amplicon sequences were
obtained using Illumina MiSeq and were classified using the Ribosomal
Database Project (RDP) at a 95% confidence interval. Relative abun-
dance of each genus was estimated by normalizing the number of reads
assigned to each genus against the total reads obtained for that sample.
The heatmap was generated using R version 2.11.0 using the heatmap
function. The fifteen most abundant classified genera per sample were
represented in the heatmap.

3. Results and discussion

3.1. Step 1: Conversion of methane to methanol

Methanol accumulated up to 322 ± 10mg/L in the methane-oxi-
dizing reactors after a 72-h cycle when the concentration of phosphate
was 6.0 g/L (Fig. 1). The rate of methanol accumulation decreased over
time, likely due to either enzymatic degradation of methanol or product
inhibition slowing down production. During the initial 24 h of the cycle,
the average volumetric production of methanol was 10 ± 0.9mg/L-h.
The maximum specific methanol production was 9.8 ± 1.0mg/g TSS-
h, which was comparable to or higher than previously reported values
[47,48].

The final concentrations of methanol after a 72-h cycle depended
upon the initial concentrations of phosphate present in the PBS medium
(Fig. 2a). For phosphate levels< 8.0 g/L, the final concentrations of
methanol increased with initial phosphate concentrations. At higher
levels, the final concentrations of methanol stabilized at approximately
350 ± 42mg/L. This result suggests that phosphate is an effective
inhibitor for methanol oxidation by MDH, and MDH activity could be

effectively inhibited at approximately 8.0 g/L (84.2mM) of phosphate.
Ammonium also had an effect on the final concentrations of me-

thanol (Fig. 2b). The amount of methanol that accumulated increased
with ammonium concentrations up to approximately 100mg NH3-N/L,
but decreased for higher ammonium levels. Ammonium concentrations
are known to impact maximum cell concentrations in methanotrophic
culture [49]. While ammonium is a necessary nitrogen source for cell
synthesis, high levels of ammonium can be toxic for methanotrophs as it
is a competitive inhibitor of methane oxidation by MMO [50].

3.2. Step 2: Methanol-powered MFC

Electricity generation steadily increased over the 45-d acclimation
period in a single-chamber, air-cathode MFC following initial inocula-
tion with anaerobic sludge and then replacement with fresh methanol
and PBS medium every 2 d (Fig. 3). The maximum voltage obtained
after 45 d was approximately 0.5 V with an external resistance of
1000Ω. (Fig. 3). Based on polarization tests taken after 45 d, the
maximum power density was 426 ± 17mW/m2 (Fig. 4a).

During MFC operation, methanol was rapidly consumed, with a
final concentration of 51 ± 4mg/L after 24 h (Fig. 4b). During this
24 h cycle, the concentration of acetate in solution slowly increased to a

Fig. 1. Concentrations of methanol (mg/L) in methane-oxidizing reactors
monitored over a 72-h cycle, using an initial phosphate concentration of 6.0 g/
L.

Fig. 2. Final concentrations of methanol (mg/L) accumulated after a 72-h cycle
with respect to initial concentrations of (a) phosphate (PO4

3−) and (b) am-
monium (NH4

+) present in PBS media.
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maximum of 55 ± 12mg/L at 12 h, and then decreased to a final value
of 16 ± 3mg/L after 24 h. The production of acetate in a methanol-fed
MFC indicated that acetate is a byproduct of methanol oxidation and/or
fermentation, with acetate likely used for current generation. The
coulombic efficiency (εc) calculated for a cycle was 22 ± 3%.

3.3. Integration of step 1 and step 2

In the tests described above, the two reactors were fed separate
solutions. To demonstrate that the two reactors could be coupled to-
gether, the methanol-rich solution from the methane-oxidizing reactors
(step 1) was directly used in the MFCs acclimated to methanol (step 2).
The maximum power density produced using the methanol reactor ef-
fluent was 398 ± 15mW/m2, which was only slightly less than that
produced using fresh PBS medium amended with 320mg/L of me-
thanol. This indicated that the methanol produced from the first reactor
did not need to be purified before being supplied to the MFCs.

3.4. Microbial community analysis

Analysis of the microbial communities developed in the suspended
consortia in methane-oxidizing reactors indicated the predominance of
a Type I methanotrophic genus (Methylomicrobium) and methylotrophic
genera (Methylobacillus andMethylophilus) (Fig. 5a). Pure cultures of the
genus Methylomicrobium have previously been reported to efficiently
convert methane to methanol [51]. The dominance of methylotrophic
genera indicated that methanol secreted by methanotrophs is taken up
by methylotrophs even with the presence of high levels of phosphate,
which is an MDH inhibitor [41,52]. This suggests that further optimi-
zation targeted towards increasing the ratio of methanotrophs to me-
thylotrophs might be needed to increase the methanol production yield
and the overall efficiency of the process.

The three major genera found in methanol-fed MFCs were
Methylophilus, Arcobacter, and Acetobacterium (Fig. 5b). It is possible
that the dominance of Methylophilus was affected by the microbial
community in methane-oxidizing reactors (Fig. 5a), which was also
dominated byMethylophilus. The presence ofMethylophilus also suggests
that some methanol can be oxidized using diffused oxygen as an elec-
tron acceptor through Methylophilus activity. Arcobacter is a known
microaerobic exoelectrogen commonly found in acetate-fed MFCs

[53,54]. Acetobacterium is an acetogenic genus known to convert me-
thanol into acetate through acetogenic fermentation [55,56]. The pre-
sence of both Arcobacter and Acetobacterium suggests that the primary
mechanism of generating bioelectricity from methanol was acetogenic
fermentation of methanol into acetate, followed by acetate utilization
by the exoelectrogens. This conversion route would be consistent with
the measurement of acetate in the solution of the MFC over the 24 h fed
batch cycle [57]. Power production using acetate is reduced at acetate
concentrations below ∼150mg/L. The power densities measured here
were therefore understandably lower than that possible in this type of
MFC using higher acetate concentrations (∼1 g/L) [38]. It is not clear
why Geobacter was not detected in the MFCs, as opposed to a previous
study stating that Geobacter represented a substantial portion of the
bacterial community only in the anode of methanol-fed MFCs [58]. It is
possible that the initial seeding of the reactors affected the resulting
microbial communities and the primary mechanism for conversion of
methanol into bioelectricity, but this would need to be specifically
addressed in a future study.

Fig. 3. Voltage generation in triplicate single-chamber MFCs using 320mg/L of
methanol during start up.

Fig. 4. (a) Power density curve of methanol-fed MFCs taken after 45 days of
operation. (b) Concentrations of methanol (blue circle) and acetate (red square)
monitored over a 24-h operation of MFCs.
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4. Conclusions

A two-step process was developed to produce bioelectricity from
methane, based on conversion of methane into methanol in the first
reactor, followed by electricity generation using methanol in the MFC.
In the first reactor, methane-oxidizing reactor consisting primarily of
methanotrophs and methylotrophs released high concentrations of
methanol due to the use of a high concentration of phosphate, a known
MDH inhibitor. The maximum concentration of methanol was
350 ± 42mg/L when the phosphate concentration was 8.0 g/L. In the
second step, the microbial community consisted of acetogenic bacteria
known to convert methanol into acetate and known exoelectrogens. The
methanol-fed MFC produced a maximum power density of 426 ± 17
mW/m2. This two-step process enabled bioelectricity generation de-
rived from methane, without the need for engineered bacterial strains
or aseptic techniques.
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