Supporting information

Enhanced electricity generation and effective water filtration using graphene membrane air-cathodes in microbial fuel cells

Xiangru Songa, Jia Liua**, Qing Jianga, Youpeng Qub, Weihua Hea, Bruce E. Loganc, Yujie Fenga*

aState Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology. No 73 Huanghe Road, Nangang District, Harbin 150090, China

bSchool of Life Science and Technology, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin 150080, China

cDepartment of Civil and Environmental Engineering, Penn State University, 212 Sackett Building, University Park, PA, 16802, U.S.A.

*Corresponding Author:
E-mail: yujief@hit.edu.cn; phone: (+86) 451-86287017; Fax: (+86) 451-86287017

**Co-Corresponding Author:
E-mail: jia14921@163.com
Fig. S1. Schematic diagram of MFC reactor with membrane air-cathode.

Fig. S2. Porosity of the AGM and control cathodes. Error bars ± SD were based on averages measured in triplicate.
Fig. S3. Surface roughness of the AGM and control cathodes calculated by Nanoscope III software. Error bars ± SD were based on averages measured in triplicate.

Fig. S4. Conductivity images of the AGM and control cathodes. Error bars ± SD were based on averages measured in triplicate.