Supporting information ## Enhanced electricity generation and effective water filtration using graphene membrane air-cathodes in microbial fuel cells Xiangru Song^a, Jia Liu^{a**}, Qing Jiang^a, Youpeng Qu^b, Weihua He^a, Bruce E. Logan^c, Yujie Feng^{a*} ^aState Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology. No 73 Huanghe Road, Nangang District, Harbin 150090, China ^bSchool of Life Science and Technology, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin 150080, China ^cDepartment of Civil and Environmental Engineering, Penn State University, 212 Sackett Building, University Park, PA, 16802, U.S.A. *Corresponding Author: E-mail: yujief@hit.edu.cn; phone: (+86) 451-86287017; Fax: (+86) 451-86287017 **Co-Corresponding Author: E-mail: jia14921@163.com Fig. S1. Schematic diagram of MFC reactor with membrane air-cathode. Fig. S2. Porosity of the AGM and control cathodes. Error bars \pm SD were based on averages measured in triplicate. **Fig. S3.** Surface roughness of the AGM and control cathodes calculated by Nanoscope III software. Error bars \pm SD were based on averages measured in triplicate. **Fig. S4.** Conductivity images of the AGM and control cathodes. Error bars \pm SD were based on averages measured in triplicate.