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Materials and Methods 
Reactor Construction. The lab scale MRC reactor was constructed as previously 

described (13) with minor modifications (Fig. 1). The 4-cm cubic anode chamber (Lexan, 

30 mL empty bed volume) contained a graphite brush anode (D = 2.7 cm, L = 2.3 cm, 

0.22 cm2 projected area based on all fibers in the brush; Mill-Rose Labs Inc., OH). The 

brush anode was heat treated (30) before it was inoculated with the effluent from an 

existing MFC and enriched in a conventional single chamber MFC prior to MRC 

operation. The cathode chamber (2-cm cubic chamber, 18 mL empty bed volume) 

contained a 7-cm2 (projected surface area) air cathode with a Pt catalyst (0.5 mg Pt/cm2) 

applied on a carbon cloth as previously described (31), with a Nafion catalyst binder 

(water side) and four layers of polytetrafluoroethylene diffusion layers (air side). 

Although Pt was used as a catalyst here in order to benchmark performance against 

previously tested systems using NaCl solutions (13), nearly identical cathode 

performance has been obtained using activated carbon catalysts instead of Pt catalysts in 

microbial fuel cells (32). The cathode chamber also served as the first flow channel of the 

high concentrate salt stream to prevent the pH rise in the cathode chamber.  

The RED stack, assembled between the anode and cathode chambers, consists of with 

6 anion- and 5 cation-exchange membranes (Selemion AMV and CMV, Asahi glass, 

Japan), creating 5 pairs of alternating HC and LC chambers as previously described (13). 

Inter-membrane chambers were sealed and separated by silicon gaskets, each with an 8-

cm2 (2 × 4 cm) rectangular cross section cut out. Inter-membrane chamber width (1.3 

mm) was maintained with a 2 cm2 (0.5 × 4 cm) strip of polyethylene mesh. The total ion 

exchange membrane area in the RED stack was 88 cm2. The total MRC empty bed 
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volume was 58.4 mL (RED stack + Cathode = 28.4 mL; Anode = 30 mL). The HC 

solution entered the cathode chamber and flowed serially through the 5 HC cells in the 

stack, exiting from the cell next to the anode chamber (Fig. 1). The LC stream entered the 

RED stack near the anode and flowed serially through the 5 LC cells in the stack, exiting 

from the cell next to the cathode chamber. A peristaltic pump (Cole Parmer, IL) 

continuously fed the HC and LC solutions at a flow rate of 1.6 mL/min, unless specified 

otherwise.  

After stable performance in the MRC, the working electrodes (anode and cathode) 

were transferred to a cubic 4-cm (30 mL empty bed volume) single chamber MFC 

reactors to establish a performance baseline.  

Peak power, maximum energy recovery, and energy efficiency of the MRC and MFC 

were determined in separate experiments. During power density curve experiments fresh 

HC solution was pumped through the RED stack with the effluent collected in separate 

reservoirs. To maximize energy recovery and energy efficiency, 0.1-L HC and LC 

solutions were recycled in airtight flow paths for the duration of anode feeding cycles 

over a batch recycle experiment. Before each batch the stack and tubing were flushed 

with matching solutions. 

Solutions. Ammonium bicarbonate HC solutions were prepared by dissolving 

ammonium bicarbonate salt (Alfa Aesar, MA) into deionized water within an airtight 

vessel. The initial HC solutions tested were 1.8, 1.1, 0.95, 0.8, and 0.5 M. The LC 

solutions were prepared to produce salinity ratios of 50, 100, and 200 by diluting an 

aliquot of the HC solution. The anode solutions contained 1 g/L of sodium acetate 

(organic substrate for exoelectrogenic bacteria growing on anode), in 50 mM carbonate 
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buffer (4.2 g/L NaHCO3
-) containing 0.231 g/L NH4H2PO4 and trace vitamins and 

minerals (33). Domestic wastewater was collected from the primary clarifier of the Penn 

State University wastewater treatment plant. The cathode contained ammoninium 

bicarbonate HC solution, therefore protons for oxygen reduction at the cathode were 

provided by ammonium and bicarbonate ions as well as water dissociation. 

A second order relationship between ammonium bicarbonate solution concentration 

and solution conductivity (determined by conducting a stepwise dilution series) was used 

to estimate initial and final concentrations of HC and LC streams. Conductivity and pH 

of the HC and LC streams were measured (Mettler-Toledo, OH) before and after each 

batch recycle experiment. 

Analysis. Power production in batch recycle experiments was determined by 

measuring the potential drop across a fixed external resistance (300 Ω) for both MRC and 

single chamber MFC operations. Voltage drop was recorded every 20 minutes by a 

digital multimeter (Keithley Instruments, OH). Electrical current (i) was determined by 

Ohm’s law. Power was calculated by multiplying the electrical current and total cell 

voltage. Reported power densities were based on the cathode projected area (7 cm2). To 

determine the maximum MRC power (PMRC) production at each condition the reactor was 

held at open circuit voltage for one hour and then the external resistance was decreased 

from 1,000 to 50 Ω every 20 minutes with the voltage recorded at each resistance. Power 

contribution by the electrode reactions (PMFC) was determined by measuring the anode 

potential (Ean) and cathode potential (Ecat) against Ag/AgCl reference electrodes (BASi, 

IN): PMFC = (Ecat – Ean)× i. The RED stack power contribution was calculated by finding 
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stack voltage (Vstk) with two reference electrodes located on both ends of the stack as: 

PRED = Vstk × i. 

The MRC anode was transferred to a single chamber MFC to determine baseline 

power production in fed-batch experiments. In the single chamber MFC, same substrate 

solutions (sodium acetate in carbonate buffer solution and domestic wastewater) were 

provided to determine peak power production. 

Coulombic efficiency was determined as previously described (34). Energy recovery 

(rE) is defined by the ratio of energy produced by the MRC reactor and the energy input 

as substrate and salinity gradient as written in Eq. (1). Energy efficiency (ηE) was 

calculated as the ratio of energy produced to the energy consumed based on the substrate 

used and the salinity gradient, according to (13): 
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where R is the ideal gas constant (8.314 J/mol-K), T is solution temperature, V is the 

volume of solution, c is the molar concentration of ionic species i in the solution, and a is 

the activity of species i in the solution.  

At a neutral pH, concentrated ammonium bicarbonate is dominated by ammonium 

(NH4
+) and bicarbonate (HCO3

-) ions, but significant amounts of carbamate (NH4CO3
-) 

and carbonate (CO3
2-) also contribute to ionic strength. Species specific concentrations 

and activities were estimated with OLI Stream Analysis software (OLI Systems, Inc., 

Morris Plains, NJ) at a pH of 7 and temperature of 25 °C. 

To determine ammonia transport into the anode, total ammonia nitrogen (TAN = NH3 

+ NH4
+) concentration in the substrate was estimated before and after each fed-batch 

cycle (HACH, Loveland, CO) (31). Based on observed pH, corresponding free ammonia 

concentration (NH3) was calculated by:  
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Fig. S1. 
Labeled picture of an MRC reactor showing positions of the working (anode and cathode) and 
reference (Ag/AgCl) electrodes, the RED membrane stack, as well as high (HC) and low 
concentrate (LC) salt solution influent and effluent ports. 
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Fig. S2 
Power density curves of the MRC (HC = 0.95 M, SR = 100) at different salt solution flow rates.  
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Fig. S3 
Polarization curves of the MRC using different HC salt solutions, compared to that of an MFC.  
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Fig. S4 
MRC energy input (acetate and salinity energy) and output at different HC concentrations. 

0

50

100

150

200

250

300

350

0.5 1.0 1.5 2.0

E
ne

rg
y 

pe
r B

at
ch

 (J
)

HC concentration (M)

Salinity In
Acetate In
MRC Out

MFC



 
 

11 
 

 

Fig. S5 
Batch recycle component (MFC electrodes, RED and total MRC) power profile of MRC fed 
acetate operating at an external resistance of 300 Ω. 
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Fig. S6 
a) Peak power density and b) anode (A) and cathode potentials (C) of MRC and single chamber 
MFC fed domestic wastewater. Notice that the anode and cathode potentials remained relatively 
constant over the range of current densities. The relatively constant potential indicates that the 
power performance is stable, suggesting that the system could easily sustain higher power 
densities with higher organic matter concentrations in the wastewater. 
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Fig. S7 
Batch recycle component (Electrodes, RED and total MRC) power profile of MRC fed domestic 
wastewater operating at an external resistance of 300 Ω. 
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Fig. S7 
Ammonia transport into anode chamber at various HC concentrations. The MRC anode effluent 
concentrations of total ammonia-nitrogen (TAN, NH4

+ + NH3) and free ammonia-nitrogen (FAN, 
NH3) were appreciably higher than the single chamber MFC (TAN = 24 ± 5 mg/L, FAN = 0.16 ± 
0.02 mg/L). 
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