Pilot-scale Tests of Fixed Bed Reactors for Perchlorate Degradation: Plastic Medium Bioreactors

Bruce Logan (blogan@psu.edu) & Booki Min Department of Civil & Environmental Engineering Penn State University Pat Evans, Allyson Chu, CDM

Study Participants

- Site: Redlands, California, Texas St well field
- Engineering Firm: Camp, Dresser and McKee, Inc.
- Research Unit: The Pennsylvania State University
- Funding Agency: American Water Works
 Association Research Foundation (AWWARF;
 via an EPA Grant)

Plastic Medium Bioreactor

- System configuration
- Performance during six-month field tests in Redlands CA
- Reactor scale up- effect of dispersion in a packed bed reactor
- Reactor performance compared with other studies
- Stability of the bacterium used for inoculation

PSU-O4 Process Patent: Perchlorate degradation in a fixed bed bioreactor (U.S. Pat. No. 6214607)

Filter inlet controls mounted in storage tank

In line mixers, flow measurement, and flow controller

Plastic Media used in Reactor

Tri-Pack Plastic Media

(3.175 cm diameter)

Plastic medium bioreactor

Media is held in place by a perforated metal plate

Media floats in water, producing entrance region

Plastic medium bioreactor

During backwashing, media falls down, creating a mixing zone

Plastic Medium Bioreactor

- System configuration
- Performance during six-month field tests in Redlands CA
- Reactor scale up- effect of dispersion in a packed bed reactor
- Reactor performance compared with other studies
- Stability of the bacterium used for inoculation

Groundwater Characteristics

Parameter	Value	Units
Perchlorate	50 – 120	ug/L
Nitrate	4 - 4.5	mg/L-N
Oxygen	8 – 10	mg/L
TCE	3 – 5	ug/L
1,1-DCE	1 – 2	ug/L

Perchlorate Removal: All Data

Perchlorate removal: Proper operation

Nitrate Removal

Chemical Profiles in Reactor

Detention Time Measurements

0.34 L/m²s (day 172)

Before backwash: 60 min

After backwash: 70 min

0.68 L/m²s (day 166)

Retention Time (min)

Before backwash: 32 min

After backwash: 37 min

Acetic acid and Nutrients

Measurements	Influent	Effluent
Acetic acid (mg/L) pH	51 ±9 6.72 ±0.12	21 ±8 6.80 ±0.19
Phosphate (mg/L)	12.8 ±3.6	12.1 ±2.6
DOC (mg/L)- g.w. - reactor	0.28 18 ±5	8.3 ±5.6
Turbidity (NTU)		3.39 ± 3.75

Summary of Other Water Parameters

Measurements	Influent	Effluent
Temperature (°C)	19.7 ±0.7	19.4 ±0.7
Conductivity (µS/cm)	394 ±9	378 ±36
Dissolved Oxygen (mg/L) ORP (mV)	8.7 ±0.4 8 ±52	0.2 ±0.3 -85 ±77
Sulfate	33 ±2	
1,1-Dichloroethene (μg/L) Trichloroethene (μg/L)	1.2 ±0.2 [*] 3.7 ±0.5 [*]	1.3 ±0.2 3.5 ±0.6

^{*} Groundwater prior to amendments (data after day 26).

Plastic Medium Bioreactor

- System configuration
- Performance during six-month field tests in Redlands CA
- Reactor scale up- effect of dispersion in a packed bed reactor
- Reactor performance compared with other studies
- Stability of the bacterium used for inoculation

Effect of Dispersion on Performance

- Dispersion results in some fraction of the material to be in the reactor less time: result is less treatment
- Importance of dispersion can be evaluated from the magnitude of the Peclet number (Pe)
- To calculate Pe, need to measure dispersion coefficient (E).

E can be calculated from detention time (θ) measurements

The Dispersion coefficient is calculated as:

$$w = 6(2E\theta)^{1/2}$$

The Peclet number is calculated as:

$$Pe = \frac{uL}{\theta}$$

u= water velocity

L= length of column

Results of Peclet Number Calculations

- Dispersion is important when Pe<5.
- In plastic medium reactor, Pe ranged from 16 to 44.
- In sand reactor, Pe ranged from 22 to 140.
- Based on these results, dispersion was not important for overall rate of reaction (only critical factor was detention time).

Plastic Medium Bioreactor

- System configuration
- Performance during six-month field tests in Redlands CA
- Reactor scale up- effect of dispersion in a packed bed reactor
- Reactor performance compared with other studies
- Stability of the bacterium used for inoculation

Which Fixed Bed Reactor is Better?

Sand media reactor

Plastic media reactor

Backpressure measurements

Backpressure: Plastic vs Sand

Sand media

Average of 25±7 kPa

Average of 50±11 kPa

Reactor Kinetics: Removal Rates

- Expect removal rate, R, is 1st-order with respect to perchlorate concentration.
- Rate calculated as:

$$R = \frac{(Cin - Cout)}{\theta}$$

 For 1st-order kinetics, use log mean perchlorate concentration

$$C_{lm} = \frac{C_{in} - C_{out}}{\ln (C_{in} / C_{out})}$$

Rates in Plastic and Sand Medium Reactors vs Other studies

- Plastic media (0.34 L/m²s)
- ◆ Sand media (0.34 L/m²s)
- Inorganic substrate
- Other organic substrates

Recommendation: Plastic Media

- Plastic media has lower back pressure, and therefore lower operation costs
- Plastic media easier to backwash than sand media
- No loss of plastic media from reactor during backwashing
- Sand media has greater removal rate on a reactor-volume basis
- Given the above considerations, the plastic media is recommended for biological perchlorate degradation.

Plastic Medium Bioreactor

- System configuration
- Performance during six-month field tests in Redlands CA
- Reactor scale up- effect of dispersion in a packed bed reactor
- Reactor performance compared with other studies
- Stability of the bacterium used for inoculation

Did Dechlorosoma sp. KJ survive?

- Reactor inoculated with a pure culture
- Other bacteria present in groundwater
- Sterile conditions not maintained
- Electron acceptors present in order: oxygen>nitrate>> perchlorate

Perchlorate reducing microbial community profile (Preliminary Results)

What are the other prominent members of the microbial community?

uncultured Bacteroidetes

uncultured bacteria

Dechloromonas sp. strain HZ

Implications of community shift

- Isolate KJ removed perchlorate more efficiently than mixed cultures in laboratory studies
- Laboratory reactor with KJ had a minimum detention time of ~2 minutes (sand)
- Mixed culture required ~10 minutes in the laboratory for complete perchlorate removal
- Found in pilot-scale sand reactor a minimum detention time of ~10 minutes
- Community profiling indicates reactor became a mixed culture. This explains why 10 minutes was necessary for reactor design.

CONCLUSIONS

- Perchlorate (and nitrate) were completely removed in a plastic medium bioreactor at a hydraulic loading rate of 0.34 L/m²-s (0.5 gpm/ft²)
- Backwashing once a week was needed to prevent excessive biofilm buildup
- Perchlorate was removed at the same time as nitrate
- Community analysis indicates that the inoculated microbe was only a part of a diverse biofilm community that developed in the reactor.

ACKNOWLEDGMENTS

City of Redlands Doug Hedricks, Dave Commons, Ken Pang

Camp, Dresser Pat Evans, Allyson Chu, Steven Price, Stephen Liao,

& McKee, Inc. Harold Pepple, Dick Corneille, Mike Zaefer

Students Booki Min, Yanguang Song, Husen Zhang,

Funding AWWARF: Project manager Frank Blaha

REFERENCES

Logan, B.E. 2001. *J. Environ. Engng.* 127(5):469-471.

Logan, B.E., K. Kim and S. Price. 2001. *In:* Bioremediation of Inorganic Compounds, A. Leeson et al. eds. Battelle Press, Columbus, OH. 6(9):303-308.

Evans, P., A. Chu, S. Liao, S. Price. B. Min and B.E. Logan. 2002. Proc. Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, May 20-23, Monterey, CA. *In press.*

Min, B., P. Evans, A. Chu, and B.E. Logan. Perchlorate removal in a pilot plant-scale packed bed bioreactor- 2: Plastic medium bioreactor. *Submitted*.