SUPPORTING INFORMATION

Low-cost Fe-N-C catalyst derived from Fe (III)—chitosan hydrogel to enhance power production in microbial fuel cells

Wulin Yang^a, Xu Wang^b, Ruggero Rossi^a and Bruce E. Logan^a*

^a Department of Civil and Environmental Engineering, The Pennsylvania State University,
 University Park, Pennsylvania 16802, United States
 ^b School of Resource and Environmental Sciences, Hubei International Scientific and
 Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, No.

129 Luoyu Road, Wuhan 430079, P.R. China

*Corresponding Author. Telephone: +1 814 863 7908. Fax: +1 814 863 7304. E-mail: blogan@psu.edu.

Figure S1. (A) Power density curves in 50 mM PBS for AC, N–AC and Fe–N–C/AC cathodes. (B) Electrode potentials in 50 mM PBS (solid symbols=anode potentials; open symbols=cathode potentials) without correcting solution resistance.

Figure S2. (A) BET surface area of AC, N–AC, and Fe–N–C/AC. (B) Pore volume of AC, N–AC, and Fe–N–C/AC at pore sizes of < 2 nm, 2–50 nm and > 50 nm.

Figure S3. XRD patterns of AC, N–AC and Fe–N–C/AC catalysts.

Figure S4. Images of (A) synthesized Fe–N–C/AC catalyst, and (B) single chamber microbial fuel cell.

Figure S5. Original EDS mapping of Fe on Fe–N–C/AC.

Table S1. Concentrations of minerals and vitamins in solutions added to medium

Vitamins (mg L	⁻¹)	Minerals (g L ⁻¹)		
Biotin	2.0	NTA	1.5	
Folic acid	2.0	MgSO ₄	3.0	
Pyridoxine HCl	10.0	MnSO ₄ •H ₂ O	0.5	
Riboflavin	5.0	NaCl	1.0	
Thiamin	5.0	FeSO ₄ •7H ₂ O	0.1	
Nicotinic acid	5.0	CaCl ₂ •2H ₂ O	0.1	
Pantothenic acid	5.0	CoCl ₂ •6H ₂ O	0.1	
B-12	0.1	ZnCl ₂	0.13	
p-aminobenzoic acid	5.0	CuSO ₄ •5H ₂ O	0.01	
Thioctiv acid	5.0	AlK(SO ₄) ₂ •12H ₂ O	0.01	
		H ₃ BO ₃	0.01	
		Na ₂ MoO ₄	0.025	
		NiCl2•6H2O	0.024	
		Na ₂ WO ₄ •2H ₂ O	0.025	

Table S2. Parameters for EPS analysis

σ (solution conductivity)	7.29 mS cm ⁻¹
R_{Ω}/l (solution ohmic resistance per distance)	$19.6~\Omega~\mathrm{cm}^{-1}$
$d_{\text{An-Cat}}$ (distance between anode and cathode)	1.0 cm
A (electrode projected area)	$7.0~\mathrm{cm}^2$
d_{An-RE} (distances from anode to the reference	0.2 cm
electrode)	
U (voltage drop)	Measured (mV)
$E_{An,m}$ (measured anode potential)	Measured (mV)

 $\textbf{Table S3}. \ \textbf{Anode and cathode characteristic values based on EPS analysis}.$

Cathode		Anode				
Catalyst	$E_{\mathrm{Cat,e0}} \ \mathrm{(mV)}$	$R_{\mathrm{Cat,s}} \ (\mathrm{m}\Omega\ \mathrm{m}^2)$	\mathbb{R}^2	E _{An,e0} (mV)	$R_{ m An,s} \ ({ m m}\Omega\ { m m}^2)$	\mathbb{R}^2
AC	350 ± 4	24 ± 1	0.998	-285 ± 6	17 ± 1	0.993
N-AC	366 ± 11	21 ± 2	0.983	-283 ± 5	17 ± 1	0.995
Fe-N-C/AC	424 ± 4	24 ± 1	0.999	-278 ± 7	15 ± 1	0.987

Table S4. Unit prices of different materials in cathode fabrication

Material	Supplier price	Calculating price	Sources
Stainless steel 50 × 50 mesh, type 304	\$6-17/m ²	\$12/m ²	http://www.alibaba.com/product-detail/50-micron-stainless-steel-wire-mesh_509492050.html
Activated carbon (AC)	\$0.9-1.8/kg	\$1.4/kg	http://www.alibaba.com/product-detail/Bamboo-wood-based-activated-carbon-manufacturer_1459751266.html
PTFE powder	\$10-40/kg	\$25/kg	http://www.alibaba.com/product-detail/Virgin-Molding-PTFE-Powder_797829147.html
PVDF membrane (hydrophobic)	\$18–28/m ²	\$23/m ²	https://www.alibaba.com/product-detail/Membrane-filters-0-22um-and-0_60738127213.html?spm=a2700.7724838.2017115.13.91ee3d58a0 F01j
FeCl ₃ (anhydrous) (96%)	\$0.1-0.5/kg	\$0.3/kg	https://www.alibaba.com/product-detail/96-Ferric-Chloride-Anhydrous-FeCl3-CAS 62151228640.html
Chitosan (99%)	\$20-30/kg	\$25/kg	https://www.alibaba.com/product-detail/Supply-Best-100-Water-Soluble-Chitosan_60503770758.html

(The prices were all reported based on specific suppliers and median price was adopted if a range was given in the supplier price)