


1	Supporting Information
2	
3	Recovery of Ammonium and Phosphate using Battery Deionization in a
4	Background Electrolyte
5	Moon Son ^a , Benjamin L. Aronson ^a , Wulin Yang ^a , Christopher A. Gorski ^a , Bruce E. Logan ^{a,*}
6 7	^a Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
8	* Corresponding author. Email: blogan@psu.edu; Tel.: +1-814-863-7908
9	

Fig. S1 Removal of NH_4^+ at the applied constant voltages of 0.3 or 0.1 V as a function of chloride/phosphorus (Cl:P) ratio. NH_4^+ (5 mM) concentrations remained constant and the R1 (Cl:P ration of 1) and R-4 (Cl:P ration of 1) solutions were used.

Fig. S2 Removal of cations (Na⁺ and NH₄⁺) depending on the chloride/phosphorus (Cl:P) ratio at the applied constant voltages of (a) 0.3 or (b) 0.1 V. NH₄⁺ (5 mM) and Na⁺ (20 mM) concentrations remained constant and the R-0, R-24, and R-11.5 solutions were used.

Fig. S3 Phosphate ions removal in terms of percent (trapezoid, green) and molar concentration (circle, dark yellow) as a function of chloride/phosphorus (Cl:P) ratio. In order to generate struvite (NH₄MgPO₄6H₂O), 5 mM MgCl₂ was added to either R-11.5 or R-24 solution. The right-filled trapezoids indicate phosphate ions removal (%) obtained by the tests for struvite formation.