Supporting Information ## Efficient CO₂ conversion to formic acid in a novel microbial photoelectrochemical cell using a visible-light responsive Co₃O₄ nanorod-arrayed photocathode Jing Wu^a, Xiaoyu Han^a, Da Li^a*, B.E. Logan^b, Jia Liu^a, Zhaohan Zhang^a, Yujie Feng^a, * ^aState Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology. No 73 Huanghe Road, Nangang District, Harbin 150090, China ^bDepartment of Civil and Environmental Engineering, Penn State University, 212 Sackett Building, University Park, PA, 16802, U.S.A. *Corresponding Author: E-mail: <u>yujief@hit.edu.cn</u>; phone: (+86) 451-86287017; Fax: (+86) 451-86287017 **Co-Corresponding Author: E-mail: lidacumt@163.com. Figure S1. Digital photograph of the single-chamber air-cathode microbial fuel cell configuration which was used to cultivate the bioanode. Figure S2. The stable output voltage of microbial fuel cell over three weeks. **Figure S3.** Digital photograph of the microbial photoelectrochemical cell coupled with a visible-light responsive Co₃O₄ nanorod photocathode. **Table S1** EIS parameters of the Co₃O₄ nanorod-arrayed photocathode obtained from the equivalent circuit model in Figure 4B. | | $R_{\rm s}/\Omega$ | R_{ct}/Ω | C _{dl} /F | W, Yo/S x sec ⁵ | |----------|--------------------|-----------------|--------------------|----------------------------| | In dark | 11.05 | 0.28 | 0.016 | 0.015 | | In light | 7.44 | 0.013 | 0.022 | 0.023 |