Supporting Information

Efficient CO₂ conversion to formic acid in a novel microbial photoelectrochemical cell using a visible-light responsive Co₃O₄ nanorod-arrayed photocathode

Jing Wu^a, Xiaoyu Han^a, Da Li^a*, B.E. Logan^b, Jia Liu^a, Zhaohan Zhang^a, Yujie Feng^a, *

^aState Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology. No 73 Huanghe Road, Nangang District, Harbin 150090, China

^bDepartment of Civil and Environmental Engineering, Penn State University, 212 Sackett Building, University Park, PA, 16802, U.S.A.

*Corresponding Author:

E-mail: <u>yujief@hit.edu.cn</u>; phone: (+86) 451-86287017;

Fax: (+86) 451-86287017 **Co-Corresponding Author:

E-mail: lidacumt@163.com.

Figure S1. Digital photograph of the single-chamber air-cathode microbial fuel cell configuration which was used to cultivate the bioanode.

Figure S2. The stable output voltage of microbial fuel cell over three weeks.

Figure S3. Digital photograph of the microbial photoelectrochemical cell coupled with a visible-light responsive Co₃O₄ nanorod photocathode.

Table S1 EIS parameters of the Co₃O₄ nanorod-arrayed photocathode obtained from the equivalent circuit model in Figure 4B.

	$R_{\rm s}/\Omega$	R_{ct}/Ω	C _{dl} /F	W, Yo/S x sec ⁵
In dark	11.05	0.28	0.016	0.015
In light	7.44	0.013	0.022	0.023