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� Forcing flow through single brush

anode MECs produced highest

performance.

� More stable current production in

MEC with one compared to multi-

ple brush anodes.

� More negative anode potential in

MEC with flow forced through

single anode.

� Higher energy efficiency in MEC

with forced flow through a single

anode.

� Anode potential data should be

used in conjunction with current

production data.
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a b s t r a c t

Graphite fiber brush electrodes are commonly used in microbial electrolysis cells (MECs) for

simultaneous wastewater treatment and electrochemical hydrogen production. Previous

brush anode designs for continuous flow systems were configured to have flow over an

array of brush electrodes. Here we compared the performance of two systems, one with

flow through a single smaller or larger brush anode to an MEC with multiple brushes. The

single brush MECs had only a single large brush that had a diameter larger than the

chamber height, so that the brush fibers were compressed to nearly (4.5 cm diameter) or

completely (5.5 cm diameter) fill the 1.3 cm high anode chamber. To evaluate the time
an).
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Graphite brush electrodes
needed for acclimation of the anode potentials were continuously monitored for 138 d

(4.5 cm brush) or 143 d (5.5 cm brush). The best performance was obtained using the 5.5 cm

brush fibers with a volumetric current density of 554 ± 26 A/m3, compared to <400 A/m3

when using the smaller 4.5 cm brush or the multiple brush reactor. Full acclimation was

shown by a consistent and low anode potential, for example by �248 ± 8 mV (vs. a standard

hydrogen electrode) for the 5.5 cm brush, which was only 31 ± 8 mV above the minimum

estimated for acetate oxidation under standard biological conditions. These results show

that brush compression into a smaller chamber can enhance MEC performance and pro-

duce anode potentials close the thermodynamic minima.

© 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

The chemical energy content of domestic wastewater typi-

cally exceeds the energy used for traditional treatment more

than 2-fold [41], presenting an opportunity for recovering this

chemical energy during treatment. A microbial electrolysis

cell (MEC) is a technology that can recover chemical energy by

converting organic matter in wastewater into electrical cur-

rent that is used to produce hydrogen gas [18,23,34,40,50]. The

U.S. Department of Energy Fuel Cell Technology Office iden-

tified MECs as a critical technology for meeting H2 cost goals

from renewable biomass [45]. Although the overall reaction in

an MEC is not spontaneous under desired operating condi-

tions, the energy that is added into the system using an

applied potential of 0.2e0.8 V is less than that used for water

electrolysis (1.8e3.5 V) to produce H2 [25]. Therefore, MECs

used to treat wastewater can recover more energy as H2 gas

than that added to sustain current generation during opera-

tion [2,37].

Effective MEC scale-up requires reactor designs that can

produce high current densities under continuous flow condi-

tions. Volumetric current densities above 100 A/m3 have been

achieved using many different MEC designs and applied po-

tentials [8,27,43,53]. One of the highest current densities (732

A/m3) was achieved by continuously pumping the fluid

through a thin felt anode [51]. However, the relatively high

density of felt anodesmay prohibit their usewithwastewaters

that contain particles as the anodes could clog. One alterna-

tive to felt anodes are graphite fiber brushes which have been

shown to produce higher power densities in microbial fuel

cells (MFCs) than felt electrodes [1,30,38]. For small MECs, a

single brush is often used that partly fills the chamber [4,42].

Larger MECs, with continuous flow multiple brush anodes

have been used with the size, number, and configuration of

the graphite fibers showing mixed impacts on power pro-

duction [6,10,29,31,44,48]. Despite the previous results

showing good performancewhen the flowwas forced through

flat anodes, there have been no studies on usingMECs orMFCs

with the flow forced through a graphite fiber brush anode by

using a brushwith a larger diameter than that of the chamber.

Another factor important for overall MEC performance is

the efficient recovery of H2 gas. If a single-chamber MEC is
used, with nomembrane or separator between the electrodes,

there can be H2 gas recycling from the cathode to the anode

which contributes to current generation but results in less net

H2 gas recovery [31,32,39]. In addition, the use of a single

chamber can result in the loss of H2 through its conversion to

methane gas by methanogens. For example, in a very large

MEC (1000 L), there was no H2 gas recovery as all the gas

extractedwasmethane [10]. Two-chamber reactor designs are

considered to be essential for capture of H2 from the cathode,

and thus two-chamber MECs are increasingly used for

wastewater treatment in bench- and pilot-scale MEC tests

[9,19,22,28,36].

Consistent performance of MECs is important to show that

the anodes are fully acclimated and that current generation is

stable over time. However, the criteria to reach steady con-

ditions are not well defined. In MECs acclimation times span

days [1,8,10,20,24,46] to months [13,14,16,21,27,31,32,50]. At

some point, when the reactor is considered to be acclimated,

the performance is evaluated in terms of average current

density or hydrogen gas production rates

[3,7,15,17,34,43,44,51e54,56]. Steady conditions are typically

defined as achieving some consistent current production over

a limited period of operation. Often, steady conditions arise

through consistent performance of the anodes, although

anode potentials are not always continuously monitored and

reported.

To improve MEC performance two different designs were

examined here that used a single large brush, with a larger

diameter than the height of the anode chamber, that was

compared to the same chamber design equipped with several

smaller brush anodes. A single large brush that was 4.5 cm in

diameter was compressed to fit into the 1.3 cm high anode

chamber, so that in mostly filled the width of the chamber (5.5

cm). To completely fill the anode chamber, the reactor was re-

designed to contain a 5.5 cm brush so that the brush also was

able to completely fill the chamber width. The anode potential

wasmonitored in the single-brush reactors over time to better

follow the acclimation of the anode and characterize exoe-

lectrogenic microbial activity relative to overall performance

based on current production [12,15,35,37,42,54,56,57]. The

relationship between the theoretical oxidation potential for

acetate oxidation and the anode potential was shown to be

helpful for evaluating time to full acclimation. The
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performance of the reactor relative to membrane fouling was

also examined by replacing the membrane. Such information

will help improve prospects for using MECs in wastewater

treatment applications.
Materials and methods

MEC reactor configuration

The three-chambered MEC design (one anode chamber and

two cathode chambers) used here provided additional cathode

surface area by using two cathode chambers on either side of

the brush anode chamber. The rectangular shaped anode

chamber contained either multiple small brush anodes [1,27]

or a large single brush anode (Fig. 1). The reactors were made

of polycarbonate, with the anode chambers of the multiple

brush anode MEC and the single 4.5 cm diameter brush anode

MECmade of butyl rubber, while the 5.5 cm brush reactor was

completely made of polycarbonate. The anode chambers

(60 mL) had a 5.5 cm � 9.5 cm projected area but were only

1.3 cm in height, so that the larger single brush anodes were

compressed when placed in the anode chamber. All graphite

fiber brush anodes were made using two twisted titanium

wires (Zoltec PX35 carbon fibers; Mill-Rose, Mentor, OH), with

the anode and cathode chambers separated by an anion ex-

changemembrane (AEM; Selemion AMV, AGC Engineering Co.

Ltd., JP). The multiple anode MEC contained seven

4.5 cm � 1.5 cm brushes and had a total specific surface area

(SSA) of 20.6m2 (Fig. 1A andD), with the anodes placed against

the AEMs so the flow could occur around or through the

brushes. The single brush anode MECs used either a smaller

7.5 cm long by 4.5 cm diameter brush (SSA ¼ 12.0 m2; Fig. 1B

and E) or a larger 9.5 cm � 5.5 cm brush, with the brush

compressed between the membranes to fit into the chamber

(SSA ¼ 18.6 m2; Fig. 1C and F).
Fig. 1 e Continuous flow, graphite brush anode MEC designs. Gr

of (A, D) 1.5 cm diameter, (B, E) 4.5 cm diameter, and (C, F) 5.5 c

electrolyte flow.
Each cathode chamber (35 mL) contained a stainless-steel

wool cathode (316L SS, McMaster-Carr, USA) [27]. The cath-

ode chambers each had one circular hole at the bottom and

the top, allowing the catholyte to flow from bottom to top

across each individual chamber. The multiple anode MEC and

the 4.5 cm single anode MEC had one circular hole at the

bottom and the top, while the 5.5 cm diameter brush anode

chamber had two holes at the bottom and top to better

distribute the influent flow. A reference electrodewas inserted

through a hole into both the 4.5 cmdiameter single anodeMEC

(Ag/AgCl, model RE-5B, BASi, IN) and the 5.5 cm diameter

single anode MEC (Ag/AgCl, model RRPEAGCL, Pine Research,

NC).

MEC reactor operation

Voltagewas added to theMEC circuit using a power supply (BK

Precision, USA) set at 0.9 V (except as noted). The anolyte used

in the multiple brush anode MEC was a synthetic fermenta-

tion effluent (1.2 g/L of chemical oxygen demand, COD) that

consisted of sodium acetate (0.27 g), glucose (0.15 g), ethanol

(0.11 g), lactic acid (0.07 g), and bovine serum albumin (BSA,

0.32 g) per liter of 50mMphosphate buffer solution (PBS; 4.58 g

Na2HPO4, 2.45 g NaH2PO4, 0.13 g KCl, and 0.31 g NH4Cl in 1 L of

deionized water) with mineral and vitamin solutions [27]. The

anolyte used in the single brush anode MECs was an acetate

buffer solution that consisted of sodium acetate (2 g/L;

equivalent to 1.5 g/L of COD) dissolved in 50 mM PBS with

mineral and vitamin solutions [49]. The catholyte contained

only phosphate buffer (4.58 g Na2HPO4 and 2.45 g NaH2PO4) in

1 L of deionized water. The electrolytes were circulated

through Viton tubing with a peristaltic pump set at flow rates

of 40 mL/min (~1 min hydraulic retention time, HRT) for the

catholytes and 10 mL/min (6 min HRT) for the anolyte. The

electrolytes were recirculated from glass bottle reservoirs, 1 L

for the anolyte and 0.5 L for each catholyte, through the
aphics and photographs for the MEC with graphite brushes

m diameter. Arrows indicate the general direction of
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reactor with the reservoirs sealed using gas tight rubber caps.

The reservoirs were replenished with fresh media every 1e3

days. Prior to operation, fresh catholyte was deoxygenated by

sparging the solutions with high purity nitrogen gas (99.998%)

for 10e15 min with mixing using a magnetic bar. A gas

collection bag (1 L, Calibrated Instruments, NY) was attached

to each reservoir through the rubber cap to collect gases.

Current generation was monitored every 10 min by

measuring the voltage across a 10U resistor with amultimeter

(Model 2700, Keithley Instruments, Inc., OH). Anode potential

was monitored with the multimeter by measuring the po-

tential between the anode and reference electrode. At the

onset of each experiment, the anode was inoculated with

effluent from a well-acclimated microbial fuel cell (50% ano-

lyte buffer solution, 50% MFC effluent) for 7 days. After the

inoculation period, only the anolyte buffer solution was fed

into the anode chamber. Operation of the MEC with a single

5.5 cm diameter brush anode was temporarily suspended on

day 41 of operation, and then filled with fresh electrolytes and

stored in a refrigerated room (4 �C) for a few weeks, before

being placed back into operation again (as indicated).

Theoretical anode potential calculations

Acetate oxidation by the half-cell reaction CH3COO� þ 4H2O/

2HCO�
3 þ 9Hþ þ 8e� provides the energy that drives current

generation inMECs [26,34]. The theoretical oxidation potential

for acetate at non-standard conditions (E0
an) was calculated

using the Nernst equation E0
an ¼ E0

an � RT
nF ln Q, where

E0
an ¼ 0.187 V, R is the gas law constant (8.314 J/K mol), T is the

absolute temperature (293 K), F is Faraday’s constant

(96,485 C/mol), n is the number of electrons involved in the

reaction (8 e�), and Q is the reaction quotient. To calculate

minimum anode potential we assumed pH ¼ 7,

[HCO�
3 ] ¼ 5 mM, and [CH3COO�] ¼ 5 mM, resulting in

E0
an ¼ �279 mV vs. Standard Hydrogen Electrode (SHE) [37].

Calculations by others have yielded a similar value for the

acetate oxidation thermodynamic minimum of �283 mV vs.

SHE [47]. Measured anode potentials were then reported

relative to this theoretical minimum as DEan ¼ Ean � E0
an ¼

Ean þ 279.

Analytical measurements and calculations

A gas chromatograph (model 8610B, SRI Instruments Inc.,

USA) was used to analyze the composition of the gas collected

from the gas bags and electrolyte reservoir headspaces. The

volume of hydrogen produced in the gas bags was calculated

based on adding a spike of high purity nitrogen gas to the gas

bag following the initial analysis of the gas composition in the

gas bag, as previously described [3]. The hydrogen production

rate (L-H2/L-reactor/d) was calculated based on the volume of

hydrogen gas produced, total reactor volume (130mL), and the

total cycle time (~24 h). The COD of the reservoir electrolytes

were measured before and after the cycle following standard

methods (method 5220, HACH Company, CO). The Coulombic

efficiency (Ce, %) was calculated based on the percent of cur-

rent derived from the measured COD removed. The overall

hydrogen yield (rH2, %) was calculated as the percent of
hydrogen recovered compared to the theoretical amount

produced from measured COD removed. The energy yield

relative to electrical input (hE, %) was calculated based on

recovered energy as H2 compared to the electrical energy

input needed to drive the endergonic electrolysis reactions. A

thorough review of all calculated efficiencies can be found in

Ref. [37]. Gas production analysis was only performed on the

single 4.5 cm and 5.5 cm diameter graphite brush anodeMECs.

All MEC performance data were normalized by the reactor

volume (130 cm3). Statistical significance of event perfor-

mance impacts was calculated by two-tailed t-tests on the

cycle (48 h) before and after the event of interest. Maximum

current densities were calculated by averaging the absolute

maximum current density with themaximum current density

produced during the cycle (48 h) before and afterwards.
Results and discussion

MEC with a single 4.5 cm diameter graphite brush anode

The MEC with a single 4.5 cm diameter brush anode reached

current densities of up to 200 A/m3 within one day following

inoculation (Fig. 2A). The current densities varied with each

replacement of the electrolytes, with the maximum current

achieved with fresh medium, and then the current gradually

decreasing due to consumption of the substrate. In the initial

cycles over the first 30 d the current densities ranged from 10

A/m3 to >200 A/m3, and then for the remainder of the opera-

tion time (days 30e138), the current densities were always

above 140 A/m3 with a maximum current density of 414 A/m3.

Based on only current production, the MEC could have

been considered to show stable performance based on

reproducible cycles of current generation from days 35e60,

and therefore considered to be fully acclimated. However, the

anode potentials measured during this period suggested that

the anode was not fully acclimated. The anode potentials

remained mostly positive (vs. SHE) for a few weeks after the

inoculation period (day 7e29), varying from 353 mV to �51

mV, with an average potential of 125 ± 63 mV (Fig. 2B). Based

on this performance, the anode potential relative to the

calculated thermodynamic minimum (DEan) was 404 ± 63 mV.

This is quite high relative to anode potentials in many other

MEC and MFC studies where anodes typically have more

negative potentials that are closer to the half-cell potential for

acetate oxidation [49,56]. Between days 29 and 44, the anode

potential continued to decrease with each cycle and became

more negative, averaging �76 ± 60 mV (vs. SHE; DEan of

203 ± 60 mV). This period of operation coincided with the

emergence of even more homogeneous current production

cycles.

The anode potential was maintained at fully negative po-

tentials after day 44, and remained negative for the remainder

of operation (days 44e138), averaging �194 ± 44 mV (vs. SHE),

which was only DEan ¼ 85 ± 44 mV above the calculated

minimum potential. These results suggest that an average

DEan of <100 mV may be required to observe uniform current

production. Based on performance in anode potential, the

time for acclimation took ~44 days.

https://doi.org/10.1016/j.ijhydene.2020.12.102
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Fig. 2 e The performance of a single 4.5 cm diameter graphite brush anode MEC in current density (A) and anode potential

(B). The period of anode inoculation is grayed out (days 0e7). The anode potential for acetate oxidation under standard

biological conditions is ¡279 mV vs. SHE (B, dotted line). The anion exchange membranes were replaced at day 78 (E1). The

applied potential was changed from 0.9 V to 1.0 V on day 118 (E2).
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To examine the role of membrane fouling on MEC perfor-

mance, the AEMs was replaced on day 78 (Fig. 2, point E1).

After membrane replacement, the reactor’s current produc-

tion decreased significantly (p < 0.001) to a maximum current

density of 330 A/m3 compared to 389 A/m3 before the change.

Furthermore, the anode potential increased significantly

(p < 0.001), to an average of �185 ± 47 mV (vs. SHE) compared

to �227 ± 32 mV (vs. SHE) before AEM replacement. The

decrease of current density and the increase of anode poten-

tial were most likely due to the exposure of oxygen to the

anoxic electroactive microbes at the anode during the reactor

disassembly. However, performance recovered quickly, and

current production surpassed 400 A/m3 within a few days of

AEM replacement and reached maximum current density by
Fig. 3 e The performance of a single 5.5 cm diameter graphite b

(B). The period of anode inoculation is grayed out (days 0e7). T

biological conditions is ¡279 mV vs. SHE (B, dotted line). Opera

membranes were replaced on day 41 (E1). At day 71, the anode b

(E2).
day 84 (414 A/m3). This increase in current density was likely

due to a decrease in internal resistance when the AEMs were

replaced.

To investigate if current densities could be increased

further, the applied voltage was increased from 0.9 V on day

118 to 1.0 V (Fig. 2, point E2). Following the voltage increase,

however, there was a negligible change in the current density

(p > 0.1) with an average of 216 ± 48 A/m3 (day 118e138)

compared to 209 ± 49 A/m3 (day 98e118) at 0.9 V. In contrast,

the average anode potential increased significantly (p < 0.001),

to �168 ± 43 mV (vs. SHE; day 118e138) compared to

�211 ± 34 mV (vs. SHE; day 98e118) before the applied po-

tential was increased. Increasing the applied potential from

0.9 V to 1.0 V therefore seemed to have little impact on current
rush anode MEC in current density (A) and anode potential

he anode potential for acetate oxidation under standard

tion was temporarily suspended, and the anion exchange

rush was briefly extracted and rinsed with deionized water
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https://doi.org/10.1016/j.ijhydene.2020.12.102


Fig. 4 e The performance of a seven 1.5 cm diameter

graphite brush anode MEC in current density. The period of

anode inoculation is grayed out (days 0e7). The reactor

was re-inoculated at day 21 with MFC effluent (E1).

Fig. 5 e Hydrogen production rates (QH2) and efficiency

analysis for the single graphite brush anode MECs tested.

Coulombic efficiency (Ce), overall hydrogen recovery (rH2),

and the energy yield relative to electrical input (hE) are

shown. Error bars indicate standard deviation (4.5 cm

brush n ¼ 8; 5.5 cm brush n ¼ 6).
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production but resulted in a 20% increase in anode potential.

This deleterious effect of MEC operation at high applied volt-

ages may be due to damage sustained by cells in the anodic

biofilm at elevated voltages [11,33]. Other electrolysis inte-

grated bioelectrochemical systems have shown effective

operation at applied voltages >1.8 V [55] but very high voltages

(3 V or 4 V) can result in damage to the biofilm by generation of

chlorine gas due to chloride ion oxidation [5]. Typically applied

voltages are kept �1 V to extract more energy in the hydrogen

gas produced than the electrical energy added into the system

[2,37].

MEC with a single 5.5 cm diameter graphite brush anode

The single large brush of 4.5 cm produced good performance

but did not completely fill the width of the anode chamber,

which may have allowed for some flow around the electrode.

Therefore, the reactor was reconfigured so that a 5.5 cm

diameter brush, that had the same width as the anode

chamber, could be used to completely fill the chamber. The

startup of the 5.5 cm diameter brushMECwas slower than the

previous system, reaching a maximum current densities of

<100 A/m3 by day 40 (Fig. 3A). The lack of effective acclimation

was also evident by the highly positive anode potentials

(Fig. 3B), suggesting that reactor performance was largely due

to the anode or some other factor impacting anode potentials.

The AEMs were replaced on day 41 (Fig. 3, point E1) and cur-

rent production reached 176 A/m3, but this was associated

with a significant (p < 0.001) increase in the anode potentials

to 323 ± 145 mV (vs. SHE) compared to 224 ± 22 mV (vs. SHE)

before AEM replacement. The current density then decreased

to <100 A/m3 by day 65 and < 70 A/m3 by day 70.

One concern was that poor performance was due to

possible biofilm clogging or anolyte flowing through a pref-

erential flow path within the brush. For example, recent MFC

experiments treatingwastewater showed that larger diameter

brush fiber anodes were more susceptible to clogging from
biofilm growth, relative to smaller diameter brush fiber an-

odes [6]. Therefore, reactor operation was briefly suspended

on day 71, and the anodewas removed (Fig. 3, point E2). Visual

inspection of the anode showed evidence of possible prefer-

ential flow paths (see SI), but little indication of clogging due to

biofilm growth. The anode was then cleaned by gentle rinsing

with deionized water, and then returned to operation.

After anode cleaning the performance based on current

density continued to improve with each cycle, reaching >200
A/m3 by day 90. Over each cycle the current densities ranged

from59A/m3 to>550 A/m3, and for the remainder of operation

(day 90e143), typically were always above 200 A/m3 with a

maximum current density of 554 ± 26 A/m3. The improved

performance was consistent with the development of highly

negative anode potentials. The anode potentials were only

fully negative relative after day 97, averaging �248 ± 8 mV (vs.

SHE), or only DEan ¼ 31 ± 8 mV above the calculated minimum

E0
an. This highly negative anode potential further supported

the need to achieve anode potentials that have an DEan of

<100 mV. Based on the first batch cycle to operate at fully

negative anode potentials, the time for acclimation took ~97

days.

MEC with seven 1.5 cm diameter graphite brush anodes

The MEC with seven graphite brush anodes initially produced

high power densities, but current generation was not stable

and decreased over time (Fig. 4). After 7 days the current

densities reachedmore than 250 A/m3, but then decreased to a

range of ~140 A/m3 to ~400 A/m3 after 10 days of operation,

and further declined to <120 A/m3 by day 13 and < 50 A/m3 by

day 20. Re-inoculation of the reactor with effluent from an

operating MFC (day 21, Fig. 4, point E1) temporarily increased

https://doi.org/10.1016/j.ijhydene.2020.12.102
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the current density to 60e170 A/m3 from day 21 to day 29, but

the system thereafter failed to produce any stable or repeat-

able cycles of current generation. As a result of a lack of any

stable operation, no further tests were conducted with the

multi-brush anode MEC nor were anode potentials monitored

as that capability had not been designed for this older reactor

configuration.

Hydrogen production analysis

To ensure that the single graphite brush anode MECs were

achieving their operational goal of recovering energy in the

form of H2 gas, we investigated H2 production and energy

impacts relative to the electrical inputs needed to prompt

microbial electrolysis (Fig. 5). The 5.5 cm diameter brush

anode MEC had the highest rate of 3.60 ± 0.31 L/L-d with a

Coulombic efficiency of 64 ± 3%, an overall hydrogen recovery

of 82 ± 22%, and an energy yield relative to electrical input of

317 ± 17%. The 4.5 cm diameter brush anode MEC produced

2.62 ± 0.48 L/L-d with a Coulombic efficiency of 62 ± 6%, an

overall hydrogen recovery of 60 ± 10%, and an energy yield

relative to electrical input of 232 ± 55%. The similar Coulombic

efficiencies of both single brush anode reactors suggested that

the cathodes behaved similarly regardless of the anode brush

size; further implicating the importance of monitoring anode

potential performance when comparing different MEC con-

figurations. The improved performance of the larger brush

anode reactor was likely a combined result of both the in-

crease to anode size and the more complete filling of the

chamber to avoid flow around the anode fibers. The hydrogen

production analysis supports the energy positive impacts of

operating single brush anode MECs.

Performance comparative analysis

Stable performance was observed in the single 5.5 cm diam-

eter brush anode MEC, both in anode potential and current

production. After the 97-day acclimation period, the anode

potential averaged�248± 8mV (vs. SHE;DEan ¼ 31± 8mV) and

current production cycles were markedly homogeneous with

an average of 260 ± 102 A/m3. The single 4.5 cm diameter

brush anode MEC had stable performance after the 44-day

acclimation period, with the anode potential averaging

�194 ± 44 mV (vs. SHE; DEan of 85 ± 44 mV) and homogeneous

current production cycles averaging at 225 ± 53 A/m3. This

overall improvement to the performance of the 5.5 cm diam-

eter brush anode MEC, particularly apparent in a comparison

of anode potentials to the 4.5 cm diameter brush anode MEC,

indicated a beneficial relationship between reactor stability

and forcing more flow through brush anode fibers. In contrast

to these single, larger brush experiments, the multiple brush

anode MEC (seven 1.5 cm diameter brushes) did not reach

stable current production. This comparison of single and

multiple brush configurations therefore indicated that anMEC

operating with a flow forced through larger brush anodes was

more effective and stable than a reactor where flow can be

carried around brush anodes.
Monitoring anode potential, rather than only current pro-

duction, improved assessment of MEC acclimation times.

Based on the first batch cycle to operate at fully negative

anode potentials, the 5.5 cm diameter brush anode MEC took

~97 days to acclimate. This is a refinement over an estimate of

the start-up period based on relatively stable current den-

sities, which would have suggested acclimation within 45e95

days. Similarly, based on stable anode performance the 4.5 cm

diameter brush anode MEC took ~44 days to acclimate. Pre-

vious studies have suggested acclimation times that are

similar to those here [13,14,16,21,27,31,32,50], but many other

studies have considered the reactors to be fully acclimated

after < 30 days [1,8,10,20,46]. However, if the anode potentials

had been reported in these studies, we believe better confir-

mation of the startup times would have been possible by

examining whether DEan was <100 mV or when the first batch

cycle operated at fully negative anode potentials. By moni-

toring the anode potential here, it was possible to more

accurately demonstrate the time needed for full acclimation.
Conclusions

Performance of continuous flow MECs with one graphite

brush anode had improved stability in current production

compared to a similar reactor containing multiple smaller

graphite brush anodes. Forcing flow through the anode in

single brush anode MECs improved the post-acclimation

performance in both current production and anode poten-

tial, although performance during the start-up period was

highly variable with acclimation periods ranging from 44 to 97

days. Analyzing anode potential during the reactor acclima-

tion process helped quantify the approach to stable perfor-

mance, thus improving metrics to predict the end of the start-

up period and the potential for reactor destabilization.
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