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Table S1. Summarized results of previous MEC studies used for analysis.  

Substrate Single or 
double 

chamber 

Sub conc. 
(g COD/L) 

As 

(m2/m3)
a 

Eap  
(V) 

Iv 
(A/m3) 

QH2 
(m3/m3/d) 

Ref. 

Defined and synthetic wastewater 
Acetate Single 0.6 14 n.a. 2 0.002 [1] 
Acetate Double 0.8 56 0.7 31 0.5 [2] 
Acetate Double 0.8 56 0.7 24 0.5 
Acetate Double 0.8 56 0.7 22 0.3 
Acetate Double 0.8 56 0.7 39 0.4 
Acetate Double 0.8 56 0.7 39 0.6 
Acetate Single 1.0 50 1.0 163 1.0 [3] 
Acetate Double 0.8 3 0.8 7 0.03 [4] 
Acetate Double 0.8 10 0.8 26 0.18 [5] 
Acetate Single 1.0 32 0.9 131 1.1 [6] 
Acetate Single 1.1 100 1.0 460 5.4 [7] 
Acetate Single 1.5 100 1.0 460 5.4 
Acetate Single 1.1 100 1.0 360 4.1 [8] 
Acetate Double 0.6 100 0.5 140 0.04 [9] 
Acetate Double 0.6 100 0.8 330 n.a. 
Acetate Double 0.6 100 n.a. 120 0.6 [10] 
Acetate Single 2.4 14 0.6 270 2.0 [11] 
Acetate Single 2.4 14 0.6 200 1.5 
Acetate Single 2.4 14 0.6 179 2.1 [12] 
Acetate Single 0.8 22 1.1 312 4.2 [13] 
Acetate Single 0.8 25 0.9 433 3.7 [14] 
Acetate Single 1.6 35 1.0 382 1.5 [15] 
Acetate Single 1.6 25 0.8 194 1.3 [16] 
Acetate Single 1.6 25 0.8 153 1.3 
Acetate Single 1.6 25 0.8 136 1.2 
Acetate Single 0.6 6 0.5 68 0.6 [17] 
Acetate Single 0.8 13 0.6 186 1.7 [18] 
Acetate Single 0.8 25 0.6 71 0.01 [19] 
Acetate Single 0.8 25 0.9 222 1.5 
Acetate Single 0.8 25 0.6 86 0.1 
Acetate Single 0.8 25 0.9 160 0.8 
Acetate Single 0.8 25 0.6 160 1.3 [20] 
Acetate Single 0.8 25 0.6 139 1.2 
Acetate Single 0.8 25 0.6 103 0.9 
Acetate Single 0.8 15 n.a. 146 n.a. [21] 
Acetate Single 0.8 25 0.7 n.a. 0.8 [22] 
Acetate Single 0.8 25 0.9 143 1.4 
Acetate Double 1.4 35 0.9 85 1.1 



Acetate Double 1.4 35 0.9 60 0.5 [23] 
Acetate Double 1.4 35 0.9 92 0.7 
Acetate Double 1.6 25 0.9 105 0.4 [24] 
Acetate Double 1.6 25 0.9 85 0.3 
Acetate Single 0.8 30 1.0 400 n.a. [25] 
Glucose Double 1.0 4 0.6 n.a. 1.2 [26] 
Glucose Single 1.1 25 0.5 115 0.8 [27] 
Glucose Single 1.1 25 0.9 182 1.9 
Glucose Single 2.1 27 0.6 38 0.3 [28] 
Glucose Single 2.1 27 0.8 50 0.4 
Glucose Single 2.1 27 0.6 113 1.0 

Glucose, acetate, 
ethanol, lactic acid, 

BSA 

Double 1.2 25 0.9 143 0.3 [29] 

Glucose, acetate, 
ethanol, lactic acid, 

BSA 

Double 1.2 25 0.9 115 0.3 

Glucose, acetate, 
ethanol, lactic acid, 

BSA 

Double 1.2 25 0.9 173 0.3 

Glucose, acetate, 
ethanol, lactic acid, 

BSA 

Double 1.2 25 0.9 90 0.4 [30] 

Glucose, acetate, 
ethanol, lactic acid, 

BSA 

Double 1.2 25 0.9 85 0.3 

Cellulose Double 1.0 4 0.6 n.a. 0.1 [26] 
Butyric acid Double 1.0 4 0.6 n.a. 0.5 
Lactic acid Double 1.0 4 0.6 n.a. 1.0 

Propionic acid Double 1.0 4 0.6 n.a. 0.7 
Valeric acid Double 1.0 4 0.6 n.a. 0.1 
P-glycerol Single 1.2 25 0.5 116 0.8 [27] 
P-glycerol Single 1.2 25 0.9 221 2.0 
B-glycerol Single 1.2 25 0.5 35 0.1 
B-glycerol Single 1.2 25 0.9 63 0.4 

BSA Single 0.5 27 0.6 67 0.05 [31] 
BSA Single 0.8 27 0.6 125 0.2 
BSA Single 1.1 27 0.6 132 0.4 
BSA Single 1.1 27 0.8 144 0.5 
BSA Single 1.6 27 0.6 121 0.1 
BSA Single 2.3 27 0.6 135 0.1 

Peptone Single 0.5 27 0.6 33 0.1 
Peptone Single 0.8 27 0.6 68 0.04 
Peptone Single 1.1 27 0.6 76 0.1 



Peptone Single 1.1 27 0.8 111 0.1 
Peptone Single 1.6 27 0.6 77 0.1 
Peptone Single 2.3 27 0.6 93 0.02 
Glycerol Single 1.2 25 0.8 100 0.02 [32] 
Starch Single 1.2 25 0.8 25 0 
Milk Single 1.0 25 0.8 75 0.09 

Mixed Single n.a. 25 0.8 150 0.9 
Real wastewater 
Swine wastewater Single 14.5 25 0.5 92 1.0 [33] 
Swine wastewater Single 14.5 25 0.5 112 1.0 
Potato wastewater Single 2.2 25 0.9 161 0.7 [34] 

Alkaline-
pretreated WAS 

Single 4.1 27 0.6 129 0.9 [35] 

Dark fermentation 
effluent 

Double 12.2 28 0.6 10 0.02 [36] 

Dark fermentation 
effluent 

Double 12.2 28 0.8 12 0.02 

Dark fermentation 
effluent 

Double 12.2 28 1.0 20 0.02 

Industrial 
wastewater 

Single 4.1 25 0.7 38 0.8 [37] 

Industrial 
wastewater 

Single 4.1 25 0.7 30 1.2 

Food processing 
wastewater 

Single 8.1 25 0.7 25 0.1 

Food processing 
wastewater 

Single 8.1 25 0.7 25 0.2 

 

 

 

  



 

Fig. S1. Increase in methane production as a function of surface area-to-reactor volume ration 
in AD-MEC studies with carbon-based materials (circles) and other materials (squares) as 

cathodes. 

 

 

Fig. S2. Comparisons of methane production rate in AD-MECs with acetate (squares), glucose 
(triangles) and synthetic wastewaters (sWW; circles) as a function of (A) surface area-to-reactor 



volume ratio, (B) applied voltage, and (C) current density. (D) The relationship between applied 
voltage and current density. 
 

 

Fig. S3. Hydrogen production rate as a function of current density in the range of 0–80 A/m3 in 
MEC studies.  
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