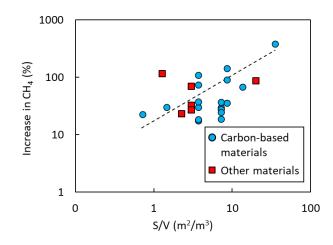
SUPPORTING INFORMATION

Impact of surface area and current generation of microbial electrolysis cell electrodes inserted into anaerobic digesters

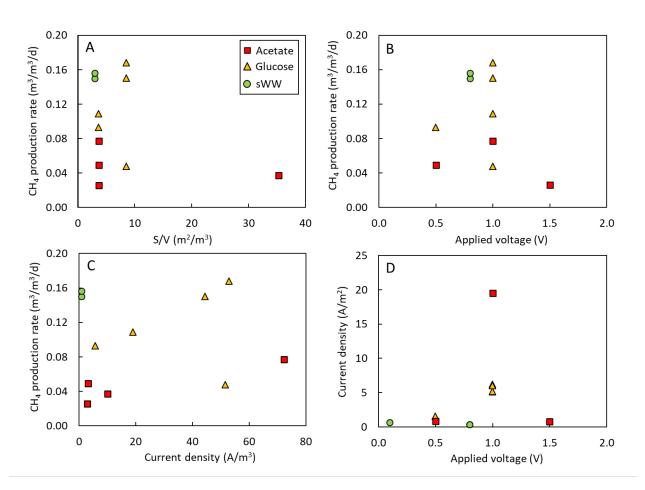
Gahyun Baek¹, Kyoung-Yeol Kim², and Bruce E. Logan^{1*}

¹Department of Civil and Environmental Engineering, The Pennsylvania State University, 231Q Sackett Building, University Park, PA 16802, USA

²Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States


*Corresponding author: e-mail: blogan@psu.edu; phone: +1-814-863-7908; fax: +1-814-863-7304

Substrate	Single or double chamber	Sub conc. (g COD/L)	A _s (m²/m³) ª	E _{ap} (V)	<i>Ι_ν</i> (A/m³)	<i>Q_{н2}</i> (m³/m³/d)	Ref.
Defined and syn	thetic wastew	ater					
Acetate	Single	0.6	14	n.a.	2	0.002	[1]
Acetate	Double	0.8	56	0.7	31	0.5	[2]
Acetate	Double	0.8	56	0.7	24	0.5	
Acetate	Double	0.8	56	0.7	22	0.3	
Acetate	Double	0.8	56	0.7	39	0.4	
Acetate	Double	0.8	56	0.7	39	0.6	
Acetate	Single	1.0	50	1.0	163	1.0	[3]
Acetate	Double	0.8	3	0.8	7	0.03	[4]
Acetate	Double	0.8	10	0.8	26	0.18	[5]
Acetate	Single	1.0	32	0.9	131	1.1	[6]
Acetate	Single	1.1	100	1.0	460	5.4	[7]
Acetate	Single	1.5	100	1.0	460	5.4	
Acetate	Single	1.1	100	1.0	360	4.1	[8]
Acetate	Double	0.6	100	0.5	140	0.04	[9]
Acetate	Double	0.6	100	0.8	330	n.a.	
Acetate	Double	0.6	100	n.a.	120	0.6	[10]
Acetate	Single	2.4	14	0.6	270	2.0	[11]
Acetate	Single	2.4	14	0.6	200	1.5	
Acetate	Single	2.4	14	0.6	179	2.1	[12]
Acetate	Single	0.8	22	1.1	312	4.2	[13]
Acetate	Single	0.8	25	0.9	433	3.7	[14]
Acetate	Single	1.6	35	1.0	382	1.5	[15]
Acetate	Single	1.6	25	0.8	194	1.3	[16]
Acetate	Single	1.6	25	0.8	153	1.3	
Acetate	Single	1.6	25	0.8	136	1.2	
Acetate	Single	0.6	6	0.5	68	0.6	[17]
Acetate	Single	0.8	13	0.6	186	1.7	[18]
Acetate	Single	0.8	25	0.6	71	0.01	[19]
Acetate	Single	0.8	25	0.9	222	1.5	
Acetate	Single	0.8	25	0.6	86	0.1	
Acetate	Single	0.8	25	0.9	160	0.8	
Acetate	Single	0.8	25	0.6	160	1.3	[20]
Acetate	Single	0.8	25	0.6	139	1.2	
Acetate	Single	0.8	25	0.6	103	0.9	
Acetate	Single	0.8	15	n.a.	146	n.a.	[21]
Acetate	Single	0.8	25	0.7	n.a.	0.8	[22]
Acetate	Single	0.8	25	0.9	143	1.4	
Acetate	Double	1.4	35	0.9	85	1.1	


 Table S1.
 Summarized results of previous MEC studies used for analysis.

Acetate	Double	1.4	35	0.9	60	0.5	[23]
Acetate	Double	1.4	35	0.9	92	0.7	
Acetate	Double	1.6	25	0.9	105	0.4	[24]
Acetate	Double	1.6	25	0.9	85	0.3	
Acetate	Single	0.8	30	1.0	400	n.a.	[25]
Glucose	Double	1.0	4	0.6	n.a.	1.2	[26]
Glucose	Single	1.1	25	0.5	115	0.8	[27]
Glucose	Single	1.1	25	0.9	182	1.9	
Glucose	Single	2.1	27	0.6	38	0.3	[28]
Glucose	Single	2.1	27	0.8	50	0.4	
Glucose	Single	2.1	27	0.6	113	1.0	
Glucose, acetate, ethanol, lactic acid, BSA	Double	1.2	25	0.9	143	0.3	[29]
Glucose, acetate, ethanol, lactic acid, BSA	Double	1.2	25	0.9	115	0.3	
Glucose, acetate, ethanol, lactic acid, BSA	Double	1.2	25	0.9	173	0.3	
Glucose, acetate, ethanol, lactic acid, BSA	Double	1.2	25	0.9	90	0.4	[30]
Glucose, acetate, ethanol, lactic acid, BSA	Double	1.2	25	0.9	85	0.3	
Cellulose	Double	1.0	4	0.6	n.a.	0.1	[26]
Butyric acid	Double	1.0	4	0.6	n.a.	0.5	
Lactic acid	Double	1.0	4	0.6	n.a.	1.0	
Propionic acid	Double	1.0	4	0.6	n.a.	0.7	
Valeric acid	Double	1.0	4	0.6	n.a.	0.1	
P-glycerol	Single	1.2	25	0.5	116	0.8	[27]
P-glycerol	Single	1.2	25	0.9	221	2.0	
B-glycerol	Single	1.2	25	0.5	35	0.1	
B-glycerol	Single	1.2	25	0.9	63	0.4	
BSA	Single	0.5	27	0.6	67	0.05	[31]
BSA	Single	0.8	27	0.6	125	0.2	
BSA	Single	1.1	27	0.6	132	0.4	
BSA	Single	1.1	27	0.8	144	0.5	
BSA	Single	1.6	27	0.6	121	0.1	
BSA	Single	2.3	27	0.6	135	0.1	
Peptone	Single	0.5	27	0.6	33	0.1	
Peptone	Single	0.8	27	0.6	68	0.04	
Peptone	Single	1.1	27	0.6	76	0.1	

Peptone	Single	1.1	27	0.8	111	0.1	
Peptone	Single	1.6	27	0.6	77	0.1	
Peptone	Single	2.3	27	0.6	93	0.02	
Glycerol	Single	1.2	25	0.8	100	0.02	[32]
Starch	Single	1.2	25	0.8	25	0	
Milk	Single	1.0	25	0.8	75	0.09	
Mixed	Single	n.a.	25	0.8	150	0.9	
Real wastewater							
Swine wastewater	Single	14.5	25	0.5	92	1.0	[33]
Swine wastewater	Single	14.5	25	0.5	112	1.0	
Potato wastewater	Single	2.2	25	0.9	161	0.7	[34]
Alkaline-	Single	4.1	27	0.6	129	0.9	[35]
pretreated WAS							
Dark fermentation effluent	Double	12.2	28	0.6	10	0.02	[36]
Dark fermentation effluent	Double	12.2	28	0.8	12	0.02	
Dark fermentation effluent	Double	12.2	28	1.0	20	0.02	
Industrial	Single	4.1	25	0.7	38	0.8	[37]
wastewater Industrial wastewater	Single	4.1	25	0.7	30	1.2	
Food processing wastewater	Single	8.1	25	0.7	25	0.1	
Food processing wastewater	Single	8.1	25	0.7	25	0.2	

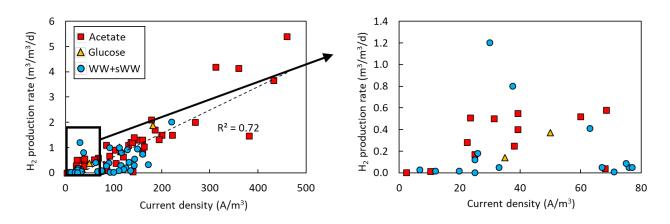


Fig. S1. Increase in methane production as a function of surface area-to-reactor volume ration in AD-MEC studies with carbon-based materials (circles) and other materials (squares) as cathodes.

Fig. S2. Comparisons of methane production rate in AD-MECs with acetate (squares), glucose (triangles) and synthetic wastewaters (sWW; circles) as a function of (A) surface area-to-reactor

volume ratio, (B) applied voltage, and (C) current density. (D) The relationship between applied voltage and current density.

Fig. S3. Hydrogen production rate as a function of current density in the range of $0-80 \text{ A/m}^3$ in MEC studies.

Reference

- 1. Pasupuleti, S.B., et al., Development of exoelectrogenic bioanode and study on feasibility of hydrogen production using abiotic VITO-CoRE[™] and VITO-CASE[™] electrodes in a single chamber microbial electrolysis cell (MEC) at low current densities. Bioresource technology, 2015. **195**: p. 131-138.
- Wang, Q., et al., Assessment of five different cathode materials for Co (II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells. International Journal of Hydrogen Energy, 2015. 40(1): p. 184-196.
- 3. Yang, Q., et al., *Hydrogen production with polyaniline/multi-walled carbon nanotube cathode catalysts in microbial electrolysis cells.* Journal of Chemical Technology & Biotechnology, 2015. **90**(7): p. 1263-1269.
- 4. Yuan, H., et al., *Facile synthesis of MoS2@ CNT as an effective catalyst for hydrogen production in microbial electrolysis cells.* ChemElectroChem, 2014. **1**(11): p. 1828-1833.
- 5. Xiao, L., et al., *Carbon/iron-based nanorod catalysts for hydrogen production in microbial electrolysis cells.* Nano Energy, 2012. **1**(5): p. 751-756.
- 6. Wang, L., et al., *Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.* Water Science and Technology, 2011. **63**(3): p. 440-448.
- 7. Hrapovic, S., et al., *Electrodeposition of nickel particles on a gas diffusion cathode for hydrogen production in a microbial electrolysis cell.* International journal of hydrogen energy, 2010. **35**(14): p. 7313-7320.
- 8. Manuel, M.-F., et al., *Hydrogen production in a microbial electrolysis cell with nickel-based gas diffusion cathodes.* Journal of Power Sources, 2010. **195**(17): p. 5514-5519.
- 9. Jeremiasse, A.W., H.V. Hamelers, and C.J. Buisman, *Microbial electrolysis cell with a microbial biocathode*. Bioelectrochemistry, 2010. **78**(1): p. 39-43.
- 10. Rozendal, R.A., et al., *Hydrogen production with a microbial biocathode*. Environmental science & technology, 2008. **42**(2): p. 629-634.
- 11. Hu, H., Y. Fan, and H. Liu, *Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts.* international journal of hydrogen energy, 2009. **34**(20): p. 8535-8542.
- 12. Hu, H., Y. Fan, and H. Liu, Optimization of NiMo catalyst for hydrogen production in microbial electrolysis

cells. international journal of hydrogen energy, 2010. 35(8): p. 3227-3233.

- 13. Kadier, A., et al., *Hydrogen gas production with an electroformed Ni mesh cathode catalysts in a single-chamber microbial electrolysis cell (MEC).* International Journal of Hydrogen Energy, 2015. **40**(41): p. 14095-14103.
- 14. Su, M., et al., *Hydrogen production in single chamber microbial electrolysis cells with stainless steel fiber felt cathodes.* Journal of Power Sources, 2016. **301**: p. 29-34.
- 15. Feng, H., et al., *An effective method for hydrogen production in a single-chamber microbial electrolysis by negative pressure control.* International Journal of Hydrogen Energy, 2018. **43**(37): p. 17556-17561.
- 16. Cai, W., et al., *Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode*. Biosensors and Bioelectronics, 2016. **80**: p. 118-122.
- 17. Gandu, B., et al., *Immobilization of bacterial cells on carbon-cloth anode using alginate for hydrogen generation in a microbial electrolysis cell.* Journal of Power Sources, 2020. **455**: p. 227986.
- 18. Call, D.F., M.D. Merrill, and B.E. Logan, *High surface area stainless steel brushes as cathodes in microbial electrolysis cells.* Environmental science & technology, 2009. **43**(6): p. 2179-2183.
- 19. Selembo, P.A., M.D. Merrill, and B.E. Logan, *The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells.* Journal of power sources, 2009. **190**(2): p. 271-278.
- 20. Selembo, P.A., M.D. Merrill, and B.E. Logan, *Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells*. international journal of hydrogen energy, 2010. **35**(2): p. 428-437.
- 21. Rozenfeld, S., et al., *Exfoliated molybdenum di-sulfide (MoS2) electrode for hydrogen production in microbial electrolysis cell*. Bioelectrochemistry, 2018. **123**: p. 201-210.
- 22. Ambler, J.R. and B.E. Logan, *Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production.* international journal of hydrogen energy, 2011. **36**(1): p. 160-166.
- Ribot-Llobet, E., et al., Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells. international journal of hydrogen energy, 2013. 38(7): p. 2951-2956.
- 24. Zikmund, E., K.-Y. Kim, and B.E. Logan, *Hydrogen production rates with closely-spaced felt anodes and cathodes compared to brush anodes in two-chamber microbial electrolysis cells.* international journal of hydrogen energy, 2018. **43**(20): p. 9599-9606.
- 25. Baek, G., et al., *The effect of high applied voltages on bioanodes of microbial electrolysis cells in the presence of chlorides.* Chemical Engineering Journal, 2021. **405**: p. 126742.
- 26. Cheng, S. and B.E. Logan, *Sustainable and efficient biohydrogen production via electrohydrogenesis.* Proceedings of the National Academy of Sciences, 2007. **104**(47): p. 18871-18873.
- 27. Selembo, P.A., et al., *High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells.* International journal of hydrogen energy, 2009. **34**(13): p. 5373-5381.
- 28. Lu, L., et al., Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells. Bioresource technology, 2012. **124**: p. 68-76.
- 29. Kim, K.-Y., et al., *Application of phase-pure nickel phosphide nanoparticles as cathode catalysts for hydrogen production in microbial electrolysis cells.* Bioresource technology, 2019. **293**: p. 122067.
- 30. Kim, K.-Y. and B.E. Logan, *Nickel powder blended activated carbon cathodes for hydrogen production in microbial electrolysis cells.* International Journal of Hydrogen Energy, 2019. **44**(26): p. 13169-13174.
- 31. Lu, L., et al., *Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells.* Biosensors and Bioelectronics, 2010. **25**(12): p. 2690-2695.
- 32. Montpart, N., et al., *Hydrogen production in single chamber microbial electrolysis cells with different complex substrates.* Water research, 2015. **68**: p. 601-615.
- 33. Wagner, R.C., et al., *Hydrogen and methane production from swine wastewater using microbial electrolysis cells.* water research, 2009. **43**(5): p. 1480-1488.
- 34. Kiely, P.D., et al., Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresource technology, 2011. **102**(1): p. 388-394.
- 35. Lu, L., et al., *Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.* water research, 2012. **46**(4): p. 1015-1026.
- 36. Chookaew, T., P. Prasertsan, and Z.J. Ren, *Two-stage conversion of crude glycerol to energy using dark*

fermentation linked with microbial fuel cell or microbial electrolysis cell. New biotechnology, 2014. **31**(2): p. 179-184.

37. Tenca, A., et al., *Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells.* international journal of hydrogen energy, 2013. **38**(4): p. 1859-1865.