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Deep learning for pH prediction in water desalination using membrane 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A CNN-LSTM model was developed for 
effluent pH prediction in MCDI. 

• The model accurately predicted effluent 
pH of the MCDI process (R2≥0.998). 

• The voltage was the factor that most 
affected the effluent pH. 

• Effluent pH prediction using only cur-
rent and voltage variables was 
conducted.  
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A B S T R A C T   

The pH of a solution has a large influence on the ion removal efficiency of the membrane capacitive deionization 
(MCDI) process, an electrochemical ion separation process. We developed a convolutional neural network linked 
with a long short-term memory (CNN-LSTM) model based on an artificial intelligence algorithm to predict the 
effluent pH of MCDI, as effluent pH is difficult to predict using conventional numerical modeling. The model 
accurately predicted effluent pH (R2≥0.998) based on the analysis of five input variables (current, voltage, 
influent conductivity and pH, and effluent conductivity) under standard operating conditions of MCDI using 
either constant-current or constant-voltage conditions. The developed model predicted effluent pH using only 
limited input variables, current and voltage, with high accuracy (R2≥0.997). Thus, the CNN-LSTM model can be 
used in practical applications as only the current and voltage of MCDI cells are often monitored in field 
applications.   
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1. Introduction 

Capacitive deionization (CDI), which is an electric ion separation 
process, has been widely used for desalination and water treatment 
[1–4]. The CDI process consists of repeating cycles of charging (ion 
adsorption) of the electrodes to remove salt and discharging (ion 
desorption) to release the salt into a brine [4]. Ionic substances in feed 
water are electrically adsorbed to the electrode used in the CDI process 
(primarily composed of carbon) during the charging phase, where cat-
ions are adsorbed to the cathode and anions to the anode [4]. The 
adsorbed ions are desorbed during the discharging phase, in which 
current and voltage flow in opposite directions, and the electrode is 
regenerated so that ions can be adsorbed on the electrode surface during 
the next charging phase [5]. Therefore, the amount of ion adsorption of 
CDI is closely related to the adsorption capacity of the electrode. 
Consequently, to fully utilize this capacity, the desorption of co-ions 
(ions of equal polarity as the electrode) must be properly excluded 
during discharging [6]. To address the co-ion desorption phenomenon, a 
membrane CDI (MCDI) process has been developed based on using an 
ion exchange membrane (IEM) on the electrode surface (anion exchange 
polymer on the anode and cation exchange polymer on the cathode) [6]. 
As the MCDI process can effectively eliminate the desorption of co-ions 
owing to the presence of IEMs, the ion adsorption efficiency of MCDI is 
superior to that of CDI [5]. 

Ion adsorption in the MCDI or CDI processes is greatly affected by the 
solution pH [7–9]. In particular, for substances whose dissociation forms 
vary depending on the pH of the solution, such as phosphorus [10], 
copper [11], boron [12], or carbonate forms [8], the charge form varies 
according to the pH of the solution, which could greatly affect the 
adsorption (or removal) rate. In addition, ions generated at a high 
operating voltage, such as H+ and OH− , may be adsorbed to the elec-
trode before the target compounds, thereby lowering the removal rate of 
the target compounds [13,14]. Therefore, to better understand the ion 
removal rate of the MCDI process and optimize the process operation, 
the effluent pH according to the electrochemical reaction must be pre-
dicted and reflected. 

Although several studies were conducted to predict the effluent 
concentration of MCDI (or CDI) through numerical modeling [2,15,16], 
studies on predicting effluent pH are limited [17]. This is likely because 
the factors affecting solution pH in MCDI are considerably diverse. 
Moreover, because the charge of electrodes and ion concentrations in 
the solution changes at every moment, it is difficult to predict all the 
variables using a conventional modeling approach. It is known that the 
Faradaic reactions affecting solution pH include anodic oxidations 
(carbon, chloride, and water oxidations) and cathodic reductions (oxy-
gen and carbon reductions) [18]. Recently, a theory that included the 
Faradaic reactions, such as the reduction of water, was developed to 
predict the solution pH in CDI using numerical modeling [17]. This 
advanced numerical model for pH prediction in CDI considers the 
reduction of water, which could affect pH fluctuations during operation. 
In addition, the numerical model can provide pH information for the 
effluent solution, anolyte, and catholyte. However, there were still 
notable differences between the measured and predicted values [17], 
which appeared to be difficult to address using numerical approaches. 
For example, the predicted pH value was a maximum of pH≈7.8 during 
the charging process, but the measured value was pH≈8.8. Similarly, the 
predicted pH value during the discharging process was pH≈7.5 (on 
average), but the measured value was pH≈8.5 (on average) [17]. To the 
best of our knowledge, no studies using numerical modeling approaches 
have predicted the pH of MCDI effluents with a high accuracy. There-
fore, to improve the accuracy of pH prediction, an alternative approach, 
such as artificial intelligence, which relies on the relationship between 
data rather than theoretical analysis was used to describe pH variations 
in the system. 

Deep learning, which has been used with great success in a variety of 
application domains in the past few years, should be a more useful 

approach to predict effluent pH of an MCDI process because it has been 
shown to be useful for processing nonlinear data for water treatment 
[19–21]. Deep learning is a system that processes input data by 
weighting it through several hidden layers and outputs the resulting 
value [22]. Depending on the structure of these hidden layers, it can be 
approximately classified in different ways such as deep neural networks, 
recurrent neural networks (RNNs), convolutional neural networks 
(CNNs), long short-term memory (LSTM) [22,23]. In particular, the CNN 
approach demonstrates superior capabilities in processing local changes 
in features [24], which results in the minimization of data noise from the 
correlation of multiple variables. This is because, during the data pro-
cessing stages of CNNs, greater weight is given to points with large in-
flection points, while a filter of a specific size scans the entire dataset. 
Moreover, LSTM is advantageous for processing time-series data because 
the embedded memory gates can classify the importance of data through 
time [25]. Based on these advantages, research has recently been con-
ducted to process and predict multivariate time-series data by linking 
CNN and LSTM (CNN-LSTM) [26]. 

In this study, we developed a CNN-LSTM model to predict the pH of 
MCDI effluent using a deep learning algorithm. The MCDI process for 
data collection was performed for brackish water conditions (20 mM 
NaCl) using standard operating conditions of either constant current 
(CC) or constant voltage (CV) [27]. Six types of data (current, voltage, 
influent conductivity, influent pH, effluent conductivity, and effluent 
pH) were collected, and five of these (current, voltage, influent con-
ductivity, influent pH, and effluent conductivity) were used to predict 
effluent pH (Fig. 1). Because current and voltage data are often moni-
tored in practical applications, a further study was conducted to predict 
the effluent pH using only these two measured parameters. In addition, a 
sensitivity analysis was conducted by only using each input variable to 
identify the factors that have the greatest influence on the change in 
effluent pH. A comparison of the CNN-LSTM model was also made to just 
the LSTM model to determine the relative accuracy of the CNN-LSTM 
model. 

2. Materials and methods 

2.1. MCDI cell assembly 

To assemble the electrode, spacer, and current collector, a custom- 
made cell with an effective area of 7 cm2 was used (~3 cm in diam-
eter). The two carbon electrodes used in the custom-made cell were 
obtained by disassembling a commercial MCDI module (E− 40, Siontech 
Co., South Korea). Both carbon electrodes (activated carbon; P-60, 
Kuraray Chemical Co., Japan) were coated by ion exchange polymers, 
either cation (− SO3H, ion exchange capacity of 1.7–1.8 meq g− 1) or 
anion polymer (− NR4Br, ion exchange capacity of 1.4–1.5 meq g− 1) 
[28]. The electrode had a surface area of 1503 m2 g− 1 (Bru-
nauer–Emmett–Teller surface area), a cumulative volume of 0.19 cm3 

g− 1 (Barret–Joyner–Halenda desorption cumulative volume of pores), 
and an average pore diameter of 3.34 nm (Barret–Joyner–Halenda 
desorption average pore diameter), which were measured using the 
Micromeritics Tristar II 3020 V1.03 analyzer [28]. The space between 
the two electrodes contained a polymer spacer (250 μm thickness and 
34% open area), and graphite foil (99.8% purity, LS538884, Goodfellow 
Cambridge Ltd., UK) was used as a current collector. 

The cell was operated in up-flow mode and fed with water using 
silicone tubing (L/S 14, Masterflex) with 1.6 mm (inner diameter) 
connected to a feed tank and a gear pump (EMP–600A, EMS Tech., South 
Korea). All experiments were conducted using a fixed volume of 2 L, 
which contained a feed solution of 20 mM NaCl fed at a fixed flow rate of 
4 mL min− 1. Considering relatively large reservoir volume and slow flow 
rate, the operation mode could be interpreted as a semi single-pass 
process [29]. 
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2.2. Electrochemical tests 

Four scenarios, including the CC and CV modes, were tested. First, 
stepwise increments in current during the CC operation were performed 
from ±14 to ±28 mA (with ±3.5 mA step increases) within a voltage 
window of ±2 V (CC-wide). A narrow voltage window, +2 to 0 V, was 
then tested with a smaller current window from ±21 to ±28 mA (with a 
±3.5 mA step increase) (CC-narrow). The CV tests were conducted with 
a voltage window of either ±1.2 to ±2.0 V (CV-high) or ±0.8 to ±1.4 V 
(CV-low) for 10 min of each voltage point. 

2.3. Data collection 

Six parameters (voltage, current, influent conductivity, effluent 
conductivity, influent pH, and effluent pH) were continuously recorded 
at a time interval of 1 s. Then, the current and voltage were transmitted 
and stored in real time to a computer connected through a battery cycler 
(WBCS3000S, WonATech Co., Ltd., South Korea) connected to the cell. 
The flow-through conductivity probes (ET908, eDAQ, Australia) and pH 
probes (ET908, eDAQ, Australia) were placed in the feed and effluent 
hoses to collect the data. To minimize delay in the responses, the con-
ductivity (~2 cm away from the cell) and pH probes (~4 cm away from 
the cell) were located as closely as possible to the MCDI cell. Under the 

Fig. 1. Schematic illustration of membrane 
capacitive deionization (MCDI) operation 
and proposed convolutional neural 
network (CNN) linked with long short-term 
memory (LSTM) model. (a) Data collec-
tions of five variables (current, voltage, Cin, 
Cout, and influent pH (pHin)) and effluent 
pH (pHout). “Cin” and “Cout” represent 
influent and effluent conductivity, respec-
tively. (b) Structure of a CNN linked with 
LSTM (CNN-LSTM) model. While the CNN 
and LSTM layers scan the same data point, 
the convolution filter of CNN extracts 
mostly the local features of the data, 
whereas LSTM processes time-series data to 
output results. Note that a 1D CNN and two 
layers of LSTM were combined and used.   
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fixed flow rate of 4 mL min− 1 that was used in this study, a response 
delay of <5 s was found for both probes. To correct for these discrep-
ancies in response time, the start time was set to be equal for each 
dataset. For example, the timing of the first changes in conductivity and 
pH were recorded after cell charging was initiated (voltage and current 
changes). Note that none of the reference electrodes were used to 
correlate the pH variations with the electrode potential. The total 
number of data points collected for CC-wide was 6601, CC-narrow was 
1264, CV-high was 6000, and CV-low was 4860. 

2.4. Data processing 

Through the trained models for each condition, the effluent pH 
(pHout) was predicted using five input data: current, voltage, influent 
conductivity, effluent conductivity, and influent pH. The data were first 
preprocessed by normalizing values in the [0, 1] range, which is a 
method known to improve the accuracy of the models [30]. Then, the 
data were divided into three subsets for different purposes: training, 
validating, and testing datasets. 

Sixty-four percent of the total data were selected as the training 
dataset, which trained models, and 16% of the total data were used as 

the validation dataset to validate the model during the training (8:2 ratio 
for training versus validation). The remaining 20% of data were used as 
the testing dataset for the prediction. In other words, 80% of the entire 
dataset were used for training and validation, while the remaining 20% 
were used for prediction. This 8:2 or 7:3 ratio is commonly found in 
contemporary deep learning studies on environmental applications 
[30,31]. Although standardized rules have not yet been developed, these 
ratios are known to prevent deep learning models from being trained 
with too little data or from consuming too much data for training. As 
chosen temporal resolutions is also closely related to the total size of 
datasets, further assessment of the accuracy of the deep learning model 
when varying the ratio and resolution of data points is desirable. The 
data were randomly distributed to each dataset without overlapping to 
prevent overfitting of the model [32,33]. Unlike data processing in 
general electrochemical processes, the entire data was used from the 
first cycle in this study. This is because the model might be trained in a 
biased manner if the information about the initial solution pH (even 
before the first charging step was initiated) is excluded. For example, the 
initial value of the influent pH in the first cycle was slightly below pH =
7, whereas that of the second cycle varied from pH≈3.5 to pH≈10.0 
(Fig. 2). 

Fig. 2. Input variables collected from MCDI operation. Profiles of current, voltage, Cin, Cout, and pHin during (a and b) constant-current (CC) or (c and d) constant- 
voltage (CV) operations. For comparison with the predicted value, the measured value of pHout is also included at the end of each profile. For each operation, the 
charging phases were marked as gray boxes. CC-wide: ±14 to ±28 mA (±3.5 mA step increments) with cutoff voltage of ±2 V; CC-narrow: ±21 to ±28 mA (±3.5 mA 
step increments) with cutoff voltage of +2 to 0 V; CV-high: ±1.2 to ±2.0 V for 10 min each with ±0.2 V step increments; CV-low: ±0.8 to ±1.4 V for 10 min each with 
±0.2 V step increments. 
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2.5. Deep learning model of CNN-LSTM 

The CNN-LSTM hybrid model was employed to improve the insuf-
ficient prediction of the stand-alone LSTM due to the complexity of the 
MCDI experimental data. In particular, features of the MCDI data can be 
better reflected in deep learning models because the CNN is more suit-
able for extracting local features from time-series data [24]. The pro-
posed model (CNN-LSTM) combines two different types of networks: a 
CNN layer followed by an LSTM layer (Fig. 1b). 

In the convolutional layer, the features are first extracted through 
convolution operations on time-series data with convolution filters (also 
known as kernels). Briefly, the convolution filter extracts mostly the 
local features of the time-series data; moreover, an activation function is 
applied to the output of the CNN to add/incorporate nonlinearity. 

The purpose of the CNN before LSTM is to employ a CNN to extract 
local features in time-series data, which might be overlooked by the 
LSTM. Then, LSTM layers were sequentially integrated with the 
extracted features, generating the time-series prediction, while 
remembering the irregular trend factor of data [26,34]. It has been re-
ported that the combination of LSTM with CNN has the advantage of 
recognizing patterns from data more effectively than using the LSTM 
individually when the time-series data contains sufficient temporal 
variances [35]. More detailed information about the CNN-LSTM model 
can be found in the Supporting information. 

2.6. Deep learning model of LSTM 

LSTM is a special form of the RNN, which has the ability to process 
sequential data owing to the presence of the LSTM cell and gating 
mechanism. The LSTM networks were originally designed to process 
long sequential data by introducing three gates in the LSTM cell: input 
(it), forget (ft), and output (ot) gates [25]. LSTM networks solve the 
limitations of the RNN due to the long time dependencies of the 
sequence by removing and adding information through the interaction 
between these three gates [36]. The input gate allows new information 
to be stored in the memory state (ct) and the forget gate determines 
which information must be remembered or forgotten in the memory 
state. Subsequently, the output gate comprehensively considers all the 
calculated results and generates the output of the LSTM cell [37,38]. The 
operations of the three gates are summarized in Eqs. (1)–(6). The cal-
culations of the hidden states (h) and cell states (c) were performed using 
Eqs. (3), (4), and (6) as follows: 

it = σ(Wi⋅[ht− 1, xt] + bi ) (1)  

ft = σ
(
Wf ⋅[ht− 1, xt] + bf

)
(2)  

ct = tanh(Wc⋅[ht− 1, xt] + bc ) (3)  

ct = ft × ct− 1 + it × ct (4)  

ot = σ(Wo⋅[ht− 1, xt] + bo ) (5)  

ht = ot × tanh(ct) (6)  

where w and b denote the weight and bias of each gate, respectively, 
which is determined during model training, and σ is the sigmoidal 
nonlinearity (also known as activation function) [39]. It should be noted 
that the LSTM model had two stacked layers (LSTM layer 1 and LSTM 
layer 2). 

2.7. Hyperparameter optimization 

In deep learning, hyperparameters (such as the learning rate, amount 
of historical data used to predict the next value, and so on) exist, and 
their optimization is significantly important because these parameters 
are directly related to the performance of the model [40]. We optimized 

the hyperparameters of the models by using the Bayesian optimization 
method, which is based on a probabilistic model [41]. The purpose of 
Bayesian optimization is to determine the hyperparameters on desig-
nated subsets that globally minimize the loss function. Bayesian opti-
mization utilizes the Gaussian process as a surrogate function owing to 
its descriptive power and analytic tractability [42]. 

The validation MSE was used as the objective function during 
hyperparameter optimization, as presented below: 

MSE =

[
∑n

i=1

(
Yi − Ŷ i

)2
]

n
(7)  

where Yi is the observed data, Ŷ i is the predicted data, and n is the size of 
the test set. 

To check the reliability of the optimization step, the convergence 
plot was plotted using the loss values in each hyperparameter optimi-
zation iteration. The optimized hyperparameters were chosen when the 
minimum validation MSE was observed during iterations [43]. 

2.8. Model evaluation 

The prediction results of the models were evaluated using the coef-
ficient of determination (R2), normalized root-mean-square error 
(NRMSE), root-mean-square error (RMSE), and mean absolute error 
(MAE) (Eqs. (8)–(11)), as presented below: 

R2 = 1 −

∑n
i=1

(
Ŷ i − Yi

)2

∑n
i=1

(
Yi − Y

)2 (8)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
∑n

i=1

(
Yi − Ŷ i

)2
]

n

√
√
√
√
√

(9)  

NRMSE =
RMSE

Ymax − Ymin
(10)  

MAE =

∑n
i=1

⃒
⃒
⃒Yi − Ŷ i

⃒
⃒
⃒

n
(11)  

where Ymax and Ymin are the maximum and minimum values among the 
test data, respectively. Y is the mean of the test data. 

3. Results 

3.1. Membrane capacitive deionization (MCDI) operation under different 
scenarios 

In practical MCDI applications both CC and CV operation modes are 
widely used [27]. Thus, both CC and CV conditions were tested to obtain 
different trends in the pH of the effluent solutions (pHout) (Fig. 2). 
Detailed operating conditions are provided in the Materials and methods 
section. Briefly, two different cut-off voltages were used for CC opera-
tion, with a wide cut-off voltage of ±2 V (CC-wide, from ±14 to ±28 
mA) or a narrow cut-off voltage of +2 to 0 V (CC-narrow, from ±21 to 
±28 mA). For CV operation, a higher applied voltage of ±1.2 to ±2.0 V 
(CV-high) was compared to operation with a lower voltage of ±0.8 to 
±1.4 V (CV-low). As the higher current or voltage conditions more ions 
were absorbed, resulting in a more rapid change in the effluent con-
ductivity (CC-wide versus CC-narrow, or CV-high versus CV-low). 

For CC-wide conditions, conducted with a symmetric voltage win-
dow (±2 V), the solution pH also was symmetric, which indicated that 
anodic oxidation and cathodic reduction occurred predominantly at 
similar rates during charging (oxidation) and discharging (reduction). 
For example, the solution pH was varied from pH = 3.6 (charging) to pH 
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= 10.7 (discharging) (Fig. 2a), indicating that, based on the neutral pH 
(pH = 7), the amount of H+ ions generated upon charging was almost 
proportional to that of OH− ions generated during discharging. Unex-
pectedly, there were two regions in the effluent conductivity profiles 
(Cout; dark orange line in Fig. 2a) during the discharging phases, under 
CC-wide conditions. As this phenomenon occurred when the cell voltage 
reached 0 V, it was likely due to an abrupt change in the direction of ion 
migrations inside the cell, which was instigated when the voltage 
applied was reversed. 

When a narrow voltage window of +2 to 0 V was used (CC-narrow), a 
flatter and more acidic pH was measured throughout the operation. This 
flatter trend in pH was likely owing to the reduced Faradaic reactions 
that occurred, particularly during the discharge step since the narrowed 
voltage window (from +2 to 0 V) was used. The more acidic pH varia-
tions under the CC-narrow conditions observed throughout the opera-
tion could be interpreted to be the dominant anodic Faradaic reactions, 
such as oxygen evolution and carbon oxidation. For the same reason (the 
larger voltage window, more faradaic reactions occurred), a larger 
change in solution pH was observed for CV-high due to the higher 
voltage window used (±1.2 to ±2.0 V), when compared to CV-low (±0.8 
to ±1.4 V). 

Unlike the CC condition, in the CV operation modes the solution pH 

rapidly changed when the discharging phase started as the ions adsorbed 
during charging were quickly desorbed (Fig. 2c and d). In the case of CV- 
high, the solution pH became alkaline at the first charging phase, 
whereas the solution pH became acidic during the charging phase in 
other cases. The mechanisms driving the pH changes toward alkaline 
values during the first charging phase were unclear. For example, under 
the same CV-high operation, pH changes toward acidic values were 
observed from the 2nd cycle. In addition, the solution pH became acidic 
when a lower voltage was applied (CV-low). Thus, more investigations 
should be carefully carried out to elucidate the mechanisms driving this 
unusual trend. 

3.2. Deep learning model optimization 

Two deep learning models (CNN-LSTM and LSTM) were prepared to 
predict the effluent pH by utilizing the operation data of MCDI. Briefly, 
the LSTM model contains an LSTM cell, consisting of input (it), forget 
(ft), and output (ot) gates, which was developed to process time-series 
data (note that two LSTM layers were stacked). The developed CNN- 
LSTM model consists of a CNN layer (1D convolutional and 1D max- 
pooling layers) followed by LSTM layers. The hyperparameters 
(learning speed, the amount of data processed at one time, etc.) were 

Fig. 3. Validation loss during hyperparameter optimization. Convergence plot for (a) CC-wide, (b) CC-narrow, (c) CV-high, and (d) CV-low. The validation loss of the 
CNN-LSTM (green, left) and LSTM (blue, right) were plotted as a function of the number of iterations (hyperparameter optimizations). The hyperparameters 
optimized in this step include batch size, lookback, learning rate, activation functions (refer to Supplementary materials for details). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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optimized using the Bayesian optimization method, which is based on a 
probabilistic model [41] (details in the Materials and methods). The 
hyperparameters were determined for particular values that minimized 
the loss function by considering the interactions with other hyper-
parameters. Diagonal plots indicate the influence of the change by one 
hyperparameter when the other parameters are fixed (solid red lines) 
(Figs. S1–S8). Off-diagonal plots show the results of the interactions 
between the hyperparameters. The black points represent the tested sets, 
and the color was contoured according to the calculated loss value 
(partial dependence). A brighter color (blue to yellow) indicated a lower 
loss value. The red-star points (marked with red circles) in the off- 
diagonal plots indicate the optimized hyperparameter values. For 
example, when we observed the plot for the CC-wide prediction by LSTM 
(Fig. S1), the optimum value of the batch size was determined to be 
eight, as indicated by the red dashed line (in the first row) and red stars 
(in the first column). 

The number of iterations during hyperparameter optimization was 
set to 12 times for CNN-LSTN and to 50 times for LSTM due to the orders 
of magnitude of lower validation loss in the CNN-LSTM (Fig. 3). For 
example, in the case of CC-wide, the validation loss of CNN-LSTM was 
~3 × 10− 5 MSE mean squared error (MSE; after 12 iterations), whereas 
it was ~3 × 10− 2 MSE for LSTM (after 50 iterations) after hyper-
parameter optimization. These optimizations choose the most suitable 
values of hyperparameters for both CNN-LSTM and LSTM 
(Tables S1–S3). The CNN-LSTM model was sensitive to the lookback (the 
number of previous time steps used as input), except for the CV-high 
operation, but not to the learning rate and kernel size (Figs. S1–S4). 
Conversely, the LSTM model was predominantly sensitive to the 
learning rate, but not to the number of LSTM cells (Figs. S5–S8). 

3.3. pH prediction using convolutional neural network linked with long 
short-term memory (CNN-LSTM) 

In the CNN-LSTM model, the number of learning in the deep learning 
model (epochs) ended before 300 times although it was set to 500 times 
(Fig. S9a, c, e, and g). This early stop in the epochs was determined to 
shorten the time, as the loss was insignificantly changed even if the 
training was continued, as reported in the previous literature [44]. For 
all cases, validation losses between prediction and observation were at 
least in an order of magnitude lower than that of the LSTM. For example, 
in the case of the simplest form of CC-wide, a low loss value of <0.0005 
MSE was maintained from the 10th epoch, which was in orders of 
magnitude lower than that of LSTM (~0.1 MSE). Thus, the regression 
curves for the training and test were in great agreement for all cases in 
the CNN-LSTM (Fig. S9b, d, f, and h). Consequently, the CNN-LSTM 
model predicted pHout with an accuracy of a coefficient of determina-
tion of R2≥0.998 for all scenarios, likely due to the pretreatment of the 
CNN (Table 1 and Fig. 4), which can excellently reflect the inflection 
point of the data. The accuracy of the CNN-LSTM model was signifi-
cantly higher than that reported in the numerical modeling [17], 
although the experimental conditions and setup were slightly different. 
For example, under the same CC mode, the developed CNN-LSTM model 
showed an accuracy of R2 = 0.999, normalized root-mean-square error 
of NRMSE = 0.006, and mean absolute error of MAE = 0.029 (CC-wide), 

whereas the numerical model exhibited an accuracy of R2 = 0.309, 
NRMSE = 0.301, and MAE = 0.384 (detailed calculations for the nu-
merical model in the Supplementary materials) [17]. Note that, similar 
to this study, the experiment for the numerical modeling was conducted 
at a CC mode using the feedwater of 20 mM NaCl with a batch reservoir. 

3.4. pH prediction using long short-term memory (LSTM) 

The number of learning (epochs) in the LSTM was set to 500, but the 
training of all cases was stopped before this end point was reached. An 
early stopping technique was employed to avoid overfitting of the re-
sults during the training. The training was stopped when the validation 
loss was increasing, rather than decreasing (Fig. S11a, d, g, and j) 
[43,45]. For the CC-wide case, where the regression curve of the training 
and test was in relatively good agreement (Fig. S11b, e, h, and k), the 
developed LSTM model accurately predicted pHout because of the simple 
trends in pH (Fig. S11b and c). In this case, the accuracy of the LSTM 
model was higher than that reported in the numerical modeling [17]. 
For example, under the same CC mode, which was also the operating 
condition used in the numerical modeling study, the developed LSTM 
model showed an accuracy of R2 = 0.843 (CC-wide), whereas the nu-
merical model exhibited an accuracy of R2 = 0.309 [17]. 

An increase in the complexity of the trends (CC-narrow and CV-high) 
resulted in a decrease in the prediction accuracy. For example, the 
predicted CC-wide values, which demonstrated a periodical repetition 
with similar patterns, was relatively accurate, with R2 = 0.843 
(Table S4). However, when the peak value of the pattern was changed 
(CC-narrow) or the pattern was not constant (CV-high), the accuracy 
decreased to R2 = 0.680 (CC-narrow) or R2 = 0.692 (CV-high). Even 
though the trends in pHout were relatively complex, the prediction ac-
curacy was relatively high with R2 = 0.807 in the CV-low case (Fig. S11l 
and Table S4), where training and validation losses were relatively low 
at <0.04 of the MAE (Fig. S11j). Overall, it was observed that the use of 
the LSTM model had certain limitations even after optimization, 
although it showed superior predictive accuracy to the numerical 
modeling for a simple pattern (R2 = 0.843 for LSTM and R2 = 0.309 for 
numerical modeling). Unlike the LSTM model, the CNN-LSTM model 
showed excellent accuracy regardless of the complexity of data used 
(R2≥0.998 for all scenarios); thus, the CNN-LSTM was chosen for further 
investigations such as the prediction with limited input variables. 

3.5. pH prediction based on only using current and voltage 

The developed CNN-LSTM model has consisted of CNN layer (for pre- 
processing the changes in the local features) followed by LSTM layer (for 
processing time-series data to output results). During the hyper-
parameter optimization, there were no large changes in the CNN layer 
when only two input variables were used, but there were slight changes 
in the LSTM layer (Tables S2 and S3). First, only “leaky version of a 
rectified linear unit (leakyrelu)” or “rectified linear unit (relu)” was 
selected as the activation function when only two input variables were 
used, unlike the prediction using five input variables where “tanh” was 
set as the activation function in certain cases. Second, in the case of CC- 
wide and CC-narrow in particular, the learning rate and lookback were 
decreased by choosing a small number of input variables. 

When only the two input variables of current and voltage were used 
in CNN-LSTM, the loss values during training and validation were 
maintained at low values (Fig. S10a, c, e, and g), similar to when five 
input variables were used. In addition, the regression curves showed 
that the predicted and observed values were in great agreement 
(Fig. S10b, d, f, and h). Consequently, the prediction accuracy was high 
with R2≥0.997 (Fig. 5 and Table S5) when predicting pHout using CNN- 
LSTM with limited information of current and voltage, instead of five 
input variables. This accuracy was remarkably higher than that of the 
LSTM using five input variables (R2≥0.680). Thus, both the NRMSE and 
MAE of the CNN-LSTM model with two input variables were 

Table 1 
Coefficient of determination (R2), normalized root-mean-square error (NRMSE), 
and mean absolute error (MAE) during training and test (prediction) using 
convolutional neural network linked with long short-term memory model (CNN- 
LSTM).  

MCDI 
operation 

R2 

(training) 
R2 

(test) 
NRMSE 
(training) 

NRMSE 
(test) 

MAE 
(test) 

CC-wide  0.999  0.999  0.006  0.006  0.029 
CC-narrow  0.999  0.998  0.011  0.013  0.028 
CV-high  0.999  0.999  0.061  0.011  0.062 
CV-low  0.999  0.999  0.008  0.008  0.033  
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significantly lower than those of the LSTM with five input variables 
(Tables S5 and S2). For example, in the case of CV-high, the NRMSE of 
CNN-LSTM with two input variables (NRMSE = 0.023) was in an order 
of magnitude smaller than that of the LSTM with five input variables 
(NRMSE = 0.211). 

3.6. Contributions of each input variable 

To analyze the contribution of different factors, each input variable 
was sequentially introduced into the developed CNN-LSTM model. The 
input variable of current was fixed and used together with each input 
variable for the CC mode because there were no large changes in current 
over time. Based on the same principle, the voltage was fixed in the CV 
mode and the other variables were used sequentially and analyzed. The 
number of epochs was reduced from 500 to 300 for a more explicit 
comparison between the predictions using the limited condition. 

Under CC conditions (CC-wide and CC-narrow), the voltage had the 
greatest influence on the prediction of pH (Figs. 6a, b, and S12). When 
the prediction was performed using only voltage, the accuracy was 
almost the same as that when using all five input variables (Fig. 6a and 
b). In both CC-wide and CC-narrow operations, the Cin factor had the 
lowest impact on the prediction accuracy (Table S6). In particular, in the 
case of CC-wide, when the prediction was performed using only Cin, R2 

= 0.691, NRMSE = 0.215, and MAE = 0.968 were determined, resulting 
in a decrease in the prediction accuracy when compared to other factors 
(Fig. 6a). 

Unlike the CC modes, in the CV modes, the difference in sensitivity 
for each input variable was less distinctive, as shown by the R2 values 
(Fig. 6c and d). The prediction using current showed high accuracies (R2 

= 0.980 for CV-high and R2 = 0.996 for CV-low); however, the differ-
ences when compared to Cout were marginal (R2 = 0.996 for CV-high 

and R2 = 0.993 for CV-low) (Table S7). In the CV modes, Cin and pHin 
still showed the lowest sensitivity (highest error values). However, a 
relatively high prediction accuracy of R2 > 0.912 was measured in all 
cases regardless of the choice of input variable when compared to the CC 
modes. 

4. Discussion 

The CNN-LSTM model showed superior predictive accuracy of 
effluent pH for all scenarios (R2≥0.998) when compared to the stand- 
alone LSTM model, which showed higher accuracy than the previously 
reported numerical modeling method (R2 = 0.843 for LSTM versus R2 =

0.309 for numerical modeling under CC mode) [17]. This can be inter-
preted as the fact that the CNN-LSTM model showed strength in simple 
time-series data processing due to the inclusion of the CNN for superior 
capability in processing local features. Thus, more weight was given to 
the interval in which data changes by inclusion of the CNN model. For 
example, in the case of CC-wide, where the change is relatively 
monotonous, the LSTM model also showed a relatively high prediction 
accuracy of R2 = 0.843. However, in the case of CV-high, which has 
similar shapes of pHout when compared to CC-wide, the LSTM model 
predicted the general trend but showed a decrease in the prediction 
accuracy (R2 = 0.692). In particular, it was observed that the LSTM 
model insufficiently predicted the early period of CV-high, where the 
change in pHout was rapid. This limitation of the use of LSTM implies 
that LSTM is suitable for processing the data showing pattern regularity 
over time. Unlike the LSTM model, the developed CNN-LSTM model 
accurately predicted not only the change in effluent pH but also the 
absolute value for all cases (R2≥0.998). Therefore, the use of the CNN- 
LSTM model provided an excellent prediction for time-series data pro-
cessing with rapid changes, such as the effluent pH of MCDI used in this 

Fig. 4. Effluent pH predictions using CNN-LSTM for (a) CC-wide, (b) CC-narrow, (c) CV-high, and (d) CV-low modes. The observed values (blue) are plotted together 
with the predicted values (red). Five input variables (current, voltage, Cin, Cout, and pHin) were used for the predictions. Other relevant data such as training/ 
validation losses and regression curves can be found in the Supporting information (Fig. S9). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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study. 
In the initial pHout prediction using CNN-LSTM, a total of five input 

variables including influent/effluent conductivity were used. However, 
in an actual MCDI process operation, only limited input variables, such 
as current and voltage, are often recorded. Therefore, for practical ap-
plications of the CNN-LSTM model developed in this study, prediction 
using only current and voltage as input variables was examined. The 
results showed excellent prediction of pHout using the CNN-LSTM model 
with only these two input variables (R2≥0.997). These results imply that 
the CNN-LSTM model can be applied in practical applications where 
only current and voltage are typically recorded [27]. 

Because deep learning models are not based on any assumptions 
under ideal conditions, they are known to have advantages in processing 
nonlinear environmental data when compared to numerical modeling 
[19]. However, it is also known to be less explainable because of the 
presence of hidden layers [46,47]. To partially compensate for this, a 
sensitivity analysis was performed by sequentially using the input var-
iables. Note that the sensitivity analysis was applied differently for each 
CC and CV mode. The current was used together with an input variable 
for the CC mode because a fixed current was used during the operation, 
whereas the voltage was used together with an input variable for the CV 
mode, where a fixed voltage was used. In the case of the CC mode, when 
only voltage was used, the accuracy was almost the same as that when 
using all five input variables (R2 = 0.999 for voltage, R2≥0.998 for all). 
Other factors, particularly the influent conductivity, were not helpful in 
the prediction (R2 = 0.691 for CC-wide). The peculiar thing was that the 
CV mode showed a high prediction accuracy of R2≥0.912, irrespective 
of which input variable was added. Collectively, it was confirmed that 
the voltage of the MCDI process was the factor that most affected the 
effluent pH. This is in line with previous studies showing that Faradaic 

reactions, which are typically driven by voltage, are the most important 
factors in determining the pH of the MCDI process [18]. 

Accurate prediction of the solution pH can contribute to a more 
efficient water purification process using MCDI. Because most ionic 
substances change their dissociation form according to the solution pH, 
it is possible to optimize the removal rate of the target substance by 
properly predicting the pH according to the operating conditions. For 
example, pharmaceutical compounds have different ionic properties 
depending on their pKa values [48]. Using the CNN-LSTM model 
developed in this study, operating parameters such as current and 
voltage can be properly set, thereby enhancing the removal of these 
ionic compounds. For future investigations, fundamental desalination 
performances such as salt adsorption capacity (SAC) and specific energy 
consumption (SEC) were calculated for the representative condition 
(constant current charging at +21 mA; cut-off voltage of 2 V). The re-
sults showed reasonable SAC of 4.4 mg-NaCl g-electrode− 1 and SEC of 
0.002 kWh m− 3 (see the Supporting information). 

In contrast to numerical modeling, the CNN-LSTM method used in 
this study can theoretically predict the effluent pH irrespective of the 
operating conditions (voltage, current, operation time), size, and type of 
MCDI cells or electrodes, and the properties of the influent. Moreover, 
apart from effluent pH prediction, most MCDI studies where large 
amounts of data are available, such as ion selectivity experiments or 
desalination performance, could be investigated using similar CNN- 
LSTM approaches. This is because deep learning performs prediction 
by focusing only on the correlation of data, not the reaction mechanism 
of the MCDI cell. However, similar to other deep learning techniques, 
the CNN-LSTM model must be trained prior to the prediction by securing 
data for training. For example, to employ the CNN-LSTM model in long- 
term operations with real brackishwater, full operation data must first 

Fig. 5. Effluent pH prediction with limited information for (a) CC-wide, (b) CC-narrow, (c) CV-high, and (d) CV-low modes. The observed values (blue) were plotted 
with the predicted values (red). Only two input variables (current and voltage) were used for the predictions. Other relevant data such as training/validation losses 
and regression curves can be found in the Supporting information (Fig. S10). (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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be acquired, and some portions of the data (i.e., 80% of the total data) 
should be used to train the model. In addition, for more practical ap-
plications, it is necessary to verify the versatility of the deep learning 
model in future studies which test it under more diverse conditions. 
Moreover, a proper pre-processing of data such as sequential data 
preparation for LSTM has to be conducted prior to apply the CNN-LSTM 
model. 

5. Conclusion 

The developed CNN-LSTM model exhibited superior predictive ac-
curacy of pHout for various scenarios of MCDI operation (R2≥0.998) 
when compared to the previously reported numerical modeling method 
(R2 = 0.309). When the change in pHout is relatively monotonous, the 
stand-alone LSTM also showed a relatively high prediction accuracy of 
R2 = 0.843. Results of the sensitivity analysis confirmed that Faradaic 
reactions, which are typically driven by voltage, are the most important 
factors in determining the pH of the MCDI process. Moreover, the 
developed CNN-LSTM model can be applied in practical applications 
because its excellent prediction of pHout by using only current and 
voltage as input variables (R2≥0.997). 
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