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S1. Electrode Preparation. Carbon cloth (2 x 2 cm?) was firstimmersed into 4 M HCl solution and sonicated
for 15 min. After that, it was cleaned using ethanol and DI water in sequence, sonicating for 15 minutes
each time. The cleaned carbon cloth was then calcinated at 450 °C in the air overnight. To make each
electrode, 40 mg 10% Pt/C powder, 267 uL 5 % Nafion solution, 133 pL isopropanol, and 33 pL DI were

fully mixed by stirring for 3 hours. The mixed slurry was then applied to the treated carbon cloth using a

brush. Finally, the electrodes were dried in air overnight before use.

Table S1. Parameters used in the numerical model.

Parameter Description Value Unit
) Pore radius of the pristine PA layer! 0.25 nm
TNa* Radius of sodium ions? 0.18 nm
T+ Radius of potassium ions? 0.13 nm
Tar- Radius of chloride ions? 0.12 nm
Tclo7 Radius of perchlorate ions? 0.14 nm
T Absolute temperature 293.15 K
R Gas constant 8.314 JK*mol™?
F Faraday constant 96485 Cmol™?
kg Boltzmann constant 1.38x107% JK?
e Elemental charge 1.6x107%° C
£ Vacuum permittivity 8.85x 10712 Fm?
&p Dielectric constant of the PA layer? 40
& Dielectric constant of the bulk solution® 78
Kq; Diffusional hindrance factor for all ions, the same value? 0.01
Dya+ Sodium diffusion coefficient* 1.3x10° m?s™
Dg+ Potassium diffusion coefficient* 2.0x107° m?s™t
Dc- Chloride diffusion coefficient* 2.0x10° m?s™
Dcio; Perchlorate diffusion coefficient® 1.8x10° m? st
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Dy+ Proton diffusion coefficient* 9.3x10° m?s™

Doy~ Hydroxide diffusion coefficient* 5.3x107° m? s
£ Effective porosity of the PA layer® 0.05

Cm,c Density of protonated amine groups’ 30 mM
Cma Density of residual carboxyl groups’ 100 mM
Kaa lonization constant for protonated amine groups® 1047

Kac lonization constant for carboxyl groups® 102

K, Water dissociation constant 10 M?
Esup Effective porosity of the support layer (skin layer)*° 0.1
Eelec Effective porosity of the platinum/carbon electrode!! 0.1

ay Specific surface area of the platinum/carbon electrode 1 mm™t

2 calculated based on Stokes—Einstein equation.

WE/
WS

Figure S1. Schematic diagram showing the four-electrode system for the measurement of membrane
resistance.
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Figure S2. (A) Schematic diagram showing the design of zero-gap flow cell for seawater electrolysis. Pt/C
electrodes were pressed on both sides of the separating membranes using end plates. Both the anolyte
and catholyte were circulated at a flow rate of 15 mL min. (B) Photograph of each component within the

zero-gap flow cell.
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Figure S3. (A) pH of the electrolytes at the end of the operation of the electrolyzer assembled with the PA
membranes with different number of PET layer. (B) pH of the electrolytes at the end of the operation of
the electrolyzer assembled with PA membranes treated by NaClO by different durations.
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Figure S4. (A) Electrochemical impedance spectroscopy obtained at the end of the operation of the
electrolyzer assembled with the PA membranes with different number of PET Layer. (B) Electrochemical
impedance spectroscopy obtained at the end of the operation of the electrolyzer assembled with the PA
membranes treated by NaClO by varied durations.
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Figure S5. lon permeation through the PA membranes with 0 and 2 PET layers within the electrolyzer.
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Figure S6. lon permeation through the PA membranes treated with NaClO for 2 and 24 hrs within the

electrolyzer.
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Figure S7. Calculated (A) ion permeation and (B) pH change of the electrolytes when using the pristine PA
membrane for electrolysis.
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