Supporting Information

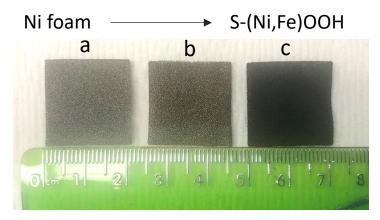
Thin-film composite membranes for hydrogen evolution with a saline catholyte water feed

Le Shi^{1,2*}, Xuechen Zhou¹, Rachel Taylor³, Chenghan Xie¹, Bin Bian¹, Derek M. Hall⁴, Ruggero Rossi^{1,6}, Michael A. Hickner⁵, Christopher A. Gorski¹, & Bruce E. Logan^{1,3*}

¹Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16801, USA

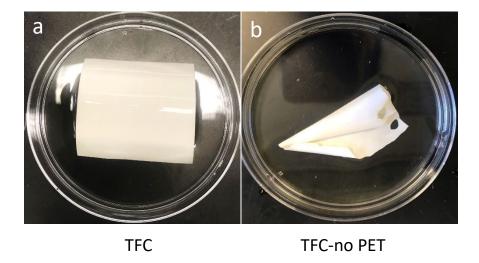
²College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P.R.China

³Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16801, USA

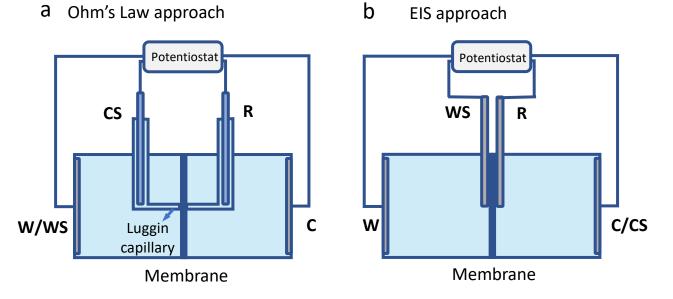

⁴Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, 16801, USA

⁵Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16801, USA

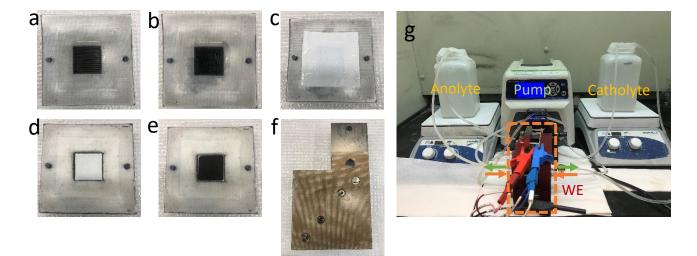
⁶Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA

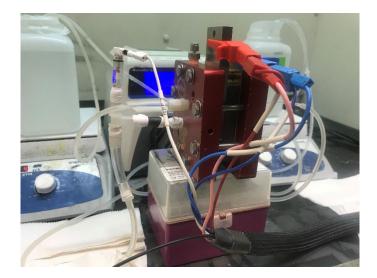

*Corresponding author Email: blogan@psu.edu; Tel.: +1-814-863-7908; le.shi@zju.edu.cn

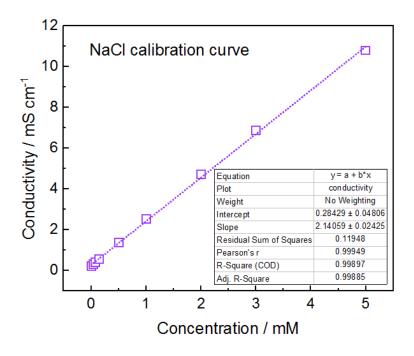
Number of pages: 8 Number of figures: 10 Number of tables: 2



S-doped Ni/Fe(oxy)hydroxide electrodes


Figure S1. Photograph of (a) Ni foam and S-(Ni,Fe)OOH electrodes prepared under different preparation conditions (b) without shaking and (c) with shaking during reaction for 5 min.


Figure S2. Photographs of (a) BW30XLE (TFC), and (b) BW30XLE after PET layer removal immersed in DI water (TFC-no PET).


Figure S3. Schematic of working electrode (W), Working sense (WS), Reference electrode (R), Counter electrode (C) and Counter sense (CS) connection in 4-electrode measurement set-up for: (a) Ohm's Law approach and (b) EIS approach.

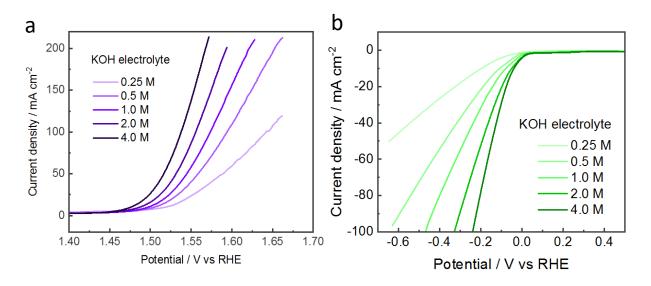

Figure S4. Assembly of the electrolyzer: (a) gasket with graphite endplate with serpentine flow channels; (b) 10% Pt/C coated carbon cloth is placed on the flow channels as the cathode; (c) TFC-no PET membrane is placed on the gasket with active layer facing the cathode; (d) another gasket is placed on the membrane with a fabric spacer in the open area; (e) the pre-pressed S-(Ni,Fe)OOH/Ni foam is placed on the spacer as the anode; (f) the other platinized Ti plate is placed on the anode side and further tightened with a torque wrench (9 Nm). (g) Photograph of water electrolyzer set-up for performance test with alkaline catholyte and anolyte pumping with a peristaltic pump.

Figure S5. Photograph of water electrolyzer set-up with addition of Hg/HgO reference electrode in the inlet of anode chamber for overpotential contribution analysis.

Figure S6. A linear calibration curve of conductivity *vs* NaCl concentration of the flow-through conductivity electrodes (ET908 Flow-Thru Conductivity Electrode, eDAQ).

Figure S7. LSV measurements for (a) the S-(Ni,Fe)OOH electrode tested in KOH as alkaline electrolytes with different concentrations for OER, (b) the Pt/C electrodes tested in KOH as alkaline electrolytes with different concentrations for HER. All these curves presented without *iR* correction.

Table S1. Osmotic pressure calculation of different electrolyte conditions

Conditions	Parameter	Anolyte	Catholyte
A: 0.5 M KOH – C: 0.5 M KOH	φ	0.948	0.948
	π / bar	23.459	23.459
A: 2.0 M KOH – C: 0.5 M NaOH	arphi	1.123	0.928
	π / bar	111.161	22.965

Osmotic pressure of difference electrolytes can be calculated based on modified Van't Hoff equation:

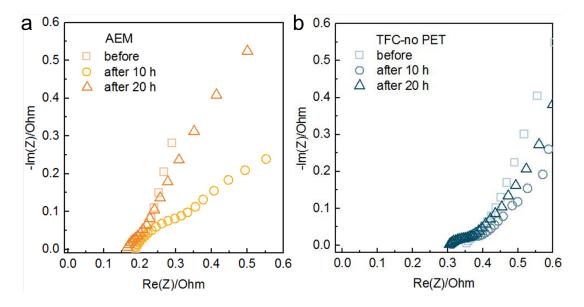
 $\pi = i\varphi_c RTC$

where π is the osmotic pressure, *i* is the Van't Hoff factor (i = 2 for KOH, NaOH and NaCl), φ_c is the osmotic coefficient, C is the molar concentration of solute, R = 0.083 L bar moles⁻¹K⁻¹ is the gas constant, T = 298.15 K is the absolute temperature.¹

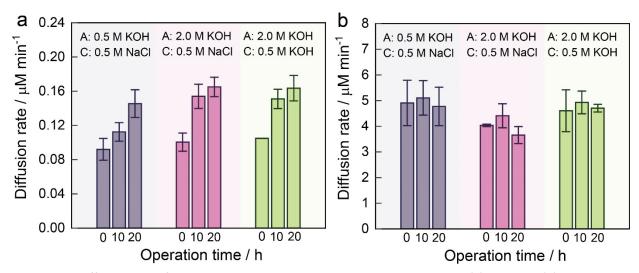
Water volume change due to water splitting

When applying 100 mA/cm² (400 mA) for 20 h, if Faraday efficiency is 100 %, produced moles of H₂ (n_{CE}):

$$n_{CE} = \frac{\int_{i=1}^{n} I_i \Delta t}{2F} = \frac{400 \times 0.001 \, A \times 72000 \, s}{2 \times 96485 \, C/mol} = 0.1492 \, \text{mol}$$


produced moles of O_2 (n_{CE}):

$$n_{CE} = rac{\int_{i=1}^{n} I_i \Delta t}{4F} = 0.0746 ext{ mol}$$


In total water consumption is 0.0746 mole

Volume of water consumption = $\frac{(0.1492 \text{ mol})(18 \times 10^{-3} \text{ kg mol}^{-1})}{1 \times 10^3 \text{ kgm}^{-3}}$ = 2.68 ml

Water volume change ratio = $\frac{2.68 \ ml}{1000 \ ml} \times 100\%$ = 0.268 %, so the water volume change due to water splitting is negligible. Therefore, the observed water volume change is not due to the water splitting.

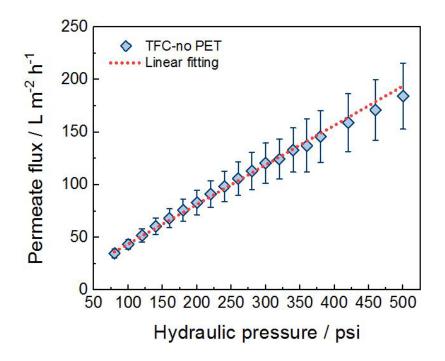

Figure S8. Nyquist plot of (a) AEM and (b) TFC-no PET membranes under 2 M KOH analyte condition with a constant current of 100 mA/cm^2 applied for (1) 0 h, (2) 10 h, and (3) 20 h.

Figure S9. Diffusion rate of 0.5 M NaCl into 0.9 M sucrose solution separated by (a) AEM and (b) TFC-no PET membranes after applying a constant current of 100 mA/cm² for different operation time in different electrolytes.

Table S2 Statistical analysis summary of ion diffusion rate of both AEM and TFC-no PET membrane by diffusion conductivity measurement after the electrolyzer performance test under a constant current density of 100 mA/cm² for different operation time (0, 10, and 20 h). The slopes, R^2 and p values are based on the linear regressions of diffusion rate over time (**Figure S9**).

AEM	0.5 M KOH-0.5 M NaCl	2.0 M KOH-0.5 M NaCl	2.0 M KOH-0.5M KOH
Fitting Slope + SD	0.0028±0.0003	0.0032±0.0012	0.0029±0.0009
R ²	0.9887	0.8736	0.9011
P value	0.0677	0.2314	0.2036
RO-no PET	0.5 M KOH-0.5 M NaCl	2.0 M KOH-0.5 M NaCl	2.0 M KOH-0.5M KOH
Fitting Slop + SD	-0.0068±0.0154	-0.019±0.0326	0.005±0.0158
R ²	0.1604	0.2533	0.0911
P value	0.7377	0.6642	0.8048

Figure S10. Experimental data for permeate water flux versus hydraulic pressure for TFC-no PET in a dead-end filtration cell with DI water at room temperature.

References

(1) Zhou, Z.; Lee, J. Y.; Chung, T.-S. Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction. *Chemical Engineering Journal* **2014**, *249*, 236-245. DOI: https://doi.org/10.1016/j.cej.2014.03.049.

(2) Hamer, W. J.; Wu, Y. C. Osmotic Coefficients and Mean Activity Coefficients of Uni - univalent Electrolytes in Water at 25° C. *Journal of Physical and Chemical Reference Data* **1972**, *1* (4), 1047-1100. DOI: 10.1063/1.3253108.