

Microbial Fuel Cell Technologies for Renewable Power and Biofuels Production From Waste Biomass

Bruce E. Logan Penn State University

Annual energy used for the water infrastructure 30 GW (USA), or 5-6% of all electricity generated

- Energy USED for wastewater treatment
 - 15 GW (USA)
 - 0.6 kWh/m³ (range: 0.12 to 1-2 kWh/m³)
- New energy SOURCE? (waste)water
 - Domestic & Industrial wastewaters contain 17 GW (USA)
 - Domestic wastewater contains (in the organic matter) about
 2-5 kWh/m³; or 4 10 times that needed using conventional treatment!

New Energy Sources Available using Microbial Electrochemical Technologies (METs)

- Wastewater : Organic matter in water (USA) – 17 GW in wastewater
 - (Save 45 GW energy/yr used + produce 17 GW = 62 GW net change)
- Cellulose Biomass Energy: Get biomass → water
- 600 GW available (based on 1.34 billion tons/yr of lignocellulose) (this is how much electrical power is produced in USA)
- Salinity Gradient Energy- Salt & Fresh-waters (global values)
 - 980 GW (from the 1900 GW available from river/ocean water)
 (20 GW available where WW flows into the ocean)
- Waste Heat Energy→ Capture heat in "water" (USA)
 - 500 GW from industrial "waste heat"
 - 1000 GW from power plant waste heat (Does not include solar and geothermal energy sources)

5

Water

6

S CH₄ Production at the cathode using microbes on the cathode in **M**icrobial **Methanogenesis C**ells

Microbial Electrochemical Technologies (METs)

METs

Microbial Electrochemical Technologies (METs)

Focus points

- Electromicrobiology
 - Bioanodes: Electron transfer from bacteria to electrodes
 - (Biocathodes: Biofuel production via electromethanogensis)
- Microbial electrochemical technologies for wastewater treatment
 - Materials
 - Performance
- Scaling up MFCs and MECs
- Conclusions and Acknowledgments

Electro-active Microorganisms

Electromicrobiology

 New sub-discipline of microbiology examining exocellular electron transfer

Electro-active Microorganisms

13

What microbes are on the anodes?

- Tested reactors over 2 months from 3 sources
 - Penn State wastewater treatment plant (P)
 - UAJA wastewater treatment plant (U)
 - Freshwater bog sediments (B)
- Performance analysis: Power production
- Community analysis
 - Clone libraries
 - Pyrosequencing
 - DGGE

PENNSTATE

– FISH

PENNSTATE

Bog produced power most rapidly but all inocula converged in power

<u>Pyrosequencing:</u> mostly Delta Proteobacteria... and of those, almost all sequences most similar to *Geobacter sulfurreducens*

 140
 P. propionicus

 120
 Geobacter sp.

 Goobacter sp.
 Goobacter sp.

 00
 Goobacter sp.

 40
 Junt

 100
 Junt

Yates et al. (2012) ISME J. 15

DGGE used to show changes in community diversity over time

Yates et al. (2012) ISME J. 17

14

Isolate from MFC: Geobacter anodireducens SD-1 Community composition unchanged at varied set potentials when different reactors used Geobacter pelophilus strain Dfr2^T (NR 026077) Characteristics of G. anodireducens SD-1 rus strain G12^T (NR 043575) —— Geobacter argillaceus strain G12¹ er pickeringii strain G13⁺ (NR 043576) (Geobacter sulfurreducens PCA) 100 Geobacter sulfurreducens KN400 (CP002031) Isolated from MFC fed formate, 98% Geobacter sulfurreducens PCAT (AE017180) similarity to strain PCA Geobacter maintreaments CA: (ALC) 1180
 Geobacter and ireducers SD-17 (KP06333)
 Geobacter maintreaments CS-15 (CP000148)
 Geobacter gebicine strain TACP-27 (AF335182)
 99 Geobacter gebicine strain TACP-5 (NR 041826) Tolerates up to 3% NaCl (vs 1.7% for PCA) 0.8 Other Synergistetes
 Spirochaetes
 Firmicutes
 Bacteroidetes Grows well in 200 mM phosphate buffer Geobacter hydrogenophilus strain H2^T (NR 025974) (PCA does not grow) 0.4 - Pelobacter propionicus DSM 2379^T (CP000482) Cannot grow using fumarate as electron - Geobacter lovleyi SZ^T (CP001089) midjiensis Bem^T (CP001124) Actinobacteria Acidobacteria 0.2 acceptor (PCA can grow) Proteobacteria DNA-DNA hybridizations show a G+C 0.005 content (mol%) of 58.4% (vs 60.9% for PCA) 360 ■SD-1 ■MC □GS-15 ■PCA в 30 (A/m³) 0.8 240 50 PBS: 50 mM phosphate buffer Current density other 0.6 Acinetob PBS-H: 200 mM PBS 180 Shewanella
 Geobacter 30 BCS: 30 mM bicarbonate buffer 8 0.4 120 3% NaCl (like seawater) SW: ractic 0.2 0.21 V ial (V vs. SHE) SW Sun, Wang, Cheng, Yates, Logan (2014) Int. J. System. Evol. Microbiol PENNSTATE Zhu, Yates, Hatzell, Ananda Rao, Saikaly, & Logan (2014) ES&T 19 Sun, Call, Wang, Cheng, Logan (2014) Env. Microbiol. Reports 20

Electro-active Microorganisms

Electrotrophs Microbes that can

accept electrons into the cell

Chemicals used (examples)

- Dissolved oxygen
- Nitrate
- CO₂ Reduction by methanogens, called "Electromethanogenesis"

Methanogens: Conventional model based on interspecies <u>hydrogen</u> transfer

What is the evidence for direct electron transfer to methanogens (electromethanogensis)?

- Identification: Certain methanogens predominate in mixed culture cathode biofilms
- Experiments: Mixed cultures + pure cultures
- Mechanism: How are electrons transferred to methanogens?

What microbes are on the cathodes?

- Tested 2 inoculum sources
 - Anaerobic Digesters (AD), from the Penn State WWTP
 - Freshwater bog sediments (Bog)
- Used different loading rates
 O 01% to 25% (m) semple (m) m
 - 0.01% to 25% (mL-sample / mL-medium)
- Performance analysis in 5 mL reactors
 - Methane production
 - Current

PENNSTATE

• Community analysis: Pyrosequencing

Siegert, Li, Yates, Logan (2015) Frontiers Microbiol. 28

26

```
Reactor Communities (Archaea)
```


Which microbe more abundant on different surfaces? Methanobacterium! -600 my Open circuit

30

How do electrotrophic methanogens take in electrons... Are hydrogenases needed?

- Experiments done by Alfred Spormann group at Stanford using:
 - Wild type (WT): Methanococcus maripaludis, a hydrogenotrophic methanogen (not a Methanobacterium)
 - Mutant (MM1284): has deletions of 6 hydrogenases (Δ6)
 5 catabolic hydrogenase genes + 1 anaobolic echB hydrogenase gene
 - grows on methanol, formate, but not $\rm H_2+\rm CO_2$
- Two-chamber MECs at set potentials of –600 mV and –700 mV

Methane production by Mutant MM1284

 Mutant cannot use H₂, but produces CH₄

How do electrons get to methanogens?

H₂-ase?: Not for *M. maripaludis*. But this microbe isn't abundant on the cathode!

So how does Methanobacterium make CH₄ using electrons derived from the cathode?

... We don't know...

PENNSTATE

Scaling up MFCs & MECs

MFCs= fuel cells, make electricity MECs= electrolysis cells, make H₂

Microbial fuel cells alone cannot be used for wastewater treatment

- MFC Challenges?
 - Reducing material costs
 - Maintaining stable electrogenic populations
- Producing a high quality, treated wastewater needs a secondary treatment process
 - COD removal (solved)
 - Nutrients (in progress)

MF	C A	Arc	hit	ec	tu	re

ChemPubSon

CHEMSUS CHEM

Bioelectrochemical Systems: An Outlook for Practical Applications Tom H. J. A. Sleutels;¹⁴¹ Annemiek Ter Heijne;*¹⁸¹ Cees J. N. Buisman;^{16, b]} and Hubertus V. M. Hamelers^{16, b)}

emical systems (BESS) hold great promise for sus-	tances to reported interna
duction of energy and cremtas. This evolve and factors that are essential for practical application of ve compare benefits (value of products and clean- nwater) with costs (capital and operational costs), is we address the maximum internal existance (in	densities of MFCs still need internal resistance needs to application as their current creating the applied what
current density that is required to make microbial FGs) and hydrogen producing microbial electrolysis cost effective. We compare these maximum resis-	high-value products in com and wastewater treatment is

Ce Towards practical implementation of bioelectrochemical wastewater treatment

René A. Rozendal^{1,2,3}, Hubertus V.M. Hamelers², Korneel Raba Jurg Keller¹ and Cees J.N. Buisman^{2,3}

ced Water Management Centre, The University of Quee partment of Environmental Technology, Wageningen I sland, St. Lucia, QLD 4072, Australia niversity, Bomenweg 2, P.O. Box 8129, 6700 EV W

PENNSTATE

41

Estimates for MFCs

100 € /m² or \$130/m²

100/

40

Original systems: \$/m² (US)

- Carbon cloth~ \$1,000
- Pt catalyst~ \$ 500
- Binder~ \$ 700
- DL (PTFE)~ 0.30 \$
- \$ Separator~ 1
- TOTAL \$2200

New systems: \$/m² (US) \$20

- Anode Cathode \$22 \$15
- SS + CB= \$20
- Catalyst (AC)=\$0.40 - Binder= \$1.5
- DL (PDMS)= \$0.15
- Separator Ś 1
- TOTAL \$43

internal resistance and form compact reactors. Within the stack the electrodes consist of repeating units of an anode coated in a mat of bacteria, or biofilm, an insulating separator and a cathode. Waste water flows over the anodes and air over the cathodes. The individual anode and cathode are connected by a wire (not shown).

Overall goal: compact reactor design

MFC Materials

PENNSTATE

MFC Materials

Anode: Graphite brush electrode

- Graphite fibers commercially available (used in tennis rackets, airplanes, etc.)
- Easy to manufacture

PENNSTATE

- Fiber diameter- 6-10 μm a good match to bacteria (~1 μm)
- High surface area per volume-Up to 15,000 m²/m³

Voltage Production Results:

Brushes still work better than flat mesh

Smaller, closer brushes work best

(Continuous flow, acetate in buffer)

Lanas & Logan (2013) J. Power Sources

Reactor stability with smaller brushes?

Continuous flow, 4 hr HRT, domestic ww

Maximum power quite different: 260 mW/m² vs 150 mW/m² Not possible to get true "duplicates"

300 Reactor S1 Cathode 200 -Reactor S1 Anode 100 0 -Reactor S3 Anode -100 -200 -300 -400 -500 -600 0 0.5 1 Current Density (A/m²) 1.5

Cathode performance similar

Anodes performance unstable (S3)

Conclusion: Thin brushes led to conditions similar to "flat anodes", where O₂ transfer through the cathode affected anode performance Stager & Logan, Unpublished

Cathode: Activated Carbon Catalysts

Catalytic Activity of ACs

Performance in MFCs

1.2

 Differences due to cathode construction versus AC added to rotating disc electrode

		-
Precursor	Sample	
Hardwood	W1- MWV1500	
Phenol resin	R1- Kuraray RP-20	
Peat	P1- Norit SX1	
Peat	P2- Norit SX Plus	
Peat	P3- Norit SX Ultra	
Coconut shell	C1- Kuraray YP-50	
Coconut shell	C2- CR8325C	
Coconut shell	C3 - ACP1250	
Bituminous Coal	B1- CR325B	l
	Watson & Logan (2013) ES&T	

Carbon chemistry important, but we still don't

understand it.

PENNSTATE

- Carbon titrated to determine relative abundance of strong acid functional groups
- Correlation "significant" only if B1 (bituminous coal) is exluded...
 - B1 worked well as an oxygen reduction catalyst, so other factors important
 - Possible?: Pore size, surface area, other surface chemical characteristics.

Activated Carbon Cathodes- (Manufactured by VITO)

PENNSTATE

А

2000

0 0.4

0.2

0.1

0.0 -0.1 -0.2 -0.3 -0.4 -0.5

0.0

0.2 0.4 0.6 0.8 1.0 Current Density [mA/cm²]

Electrode Potential [v]

B 0.3

New Binder for Activated Carbon: PVDF

- Using a PVDF binder is simple and effective
 - 1- apply to SS mesh; 2- phase inversion in water
 - Make at room temperature
 - Amenable to continuous rolling process
 - No separate gas diffusion layer (GDL) needed
 - Cost: \$15 m⁻² (\$12 m⁻² for SS mesh, \$3 m⁻² for catalyst and binder)

Stainless steel mesh ACICB/PVDF mixture ACICB/PVDF mixture ACICB/PVDF mixture ACICB/PVDF mixture Hindered diffusion C Free diffusion C VDF skin layer Hindered C Free diffusion C Vag, Hc, Zhang, Hickner, Logan (2014) ES&T Letters C State Sta

MFCs and MECs

for Wastewater Treatment

...and why MxCs alone cannot

accomplish wastewater treatment

PVDF Binder

Oxygen used for current generation decreases O₂ crossover, increases Coulombic efficiency... a little...

Curreng generation shifts more substrate to electricity generation in MFCs (acetate)

PENNSTATE

PENNSTATE

Low sCOD limits current generation!

Zhang, He, Ren, Evans, Logan (2015) Biores. Technol. 59

How much COD removal can we get from domestic WW? ~80-90%, but final COD is too high

Solids Contact Process Improves Performance of Fixed Film Bioreactors

MFC + AFMBR (Anaerobic Fluidized Bed Membrane Bioreactor) 0 Power Clear Membrane fibers Wastewater H₂O water Bio-anode Recirculation Air-cathod H⁺ CO₂+ H⁺ MFC \bigcirc Primary effluent AFMBR

PENNSTATE

AFMBR Construction

- Idea of AFMBR first published by Chae et al. (ES&T). Used as a second stage to granular fluidized bed anerobic digester
- AFMBR consists of a reactor body + ultrafiltration membrane + granular activated carbon (GAC)
- GAC fluidized by recirculation
- In tests here, used with a hydraulic retention time of 1 hour

Ren, Ahn & Logan (2014) Environ. Sci. Technol. 65

Generation I: MFC configuration

- SEA: Separator electrode assembly
 - Trimmed graphite fiber brush, one side flat
 - Separator between brush anode and cathode placed together
 - SPA: Spaced electrode assembly - Brush placed distant from cathode so it can't touch it
- Two reactors used in series $-2 \times 4 h HRT = 8 h HRT$

PENNSTATE

• Total of 4 MFCs (2 SEA, 2 SPA)

Ren, Ahn & Logan (2014) Environ. Sci. Technol. 6

Comparison of performance of SEA and SPA MFCs over time

- Initially: similar performance
- After 5 months: SEA>> SPA

Experimental Setup: MFC+AFMBR

Effluent reduced to 16 mg/L tCOD

Key to AFMBR success: Little fouling

- First 10 days, initial rapid increase in transmembrane pressure (TMP)
- Days 10-50, only slight increase in TMP
- . Flux of 16 LMH much greater than that in previous studies with anaerobic fluidized bed reactors (AFBRs)
 - AFMBR: 6-7 LMH at start 4-11 LMH at start

Ren, Ahn & Logan (2014) Environ. Sci. Technol. 71

Gen I MFCs: Separators & 1 or 2 Cathodes

COD Removals corrected for Actual HRTs HRTs: N1C > S2C

- Same theoretical • HRT set for reactor comparisons
- N1C > S2C
- It is important to • measure actual HRTs

			н	RT (h)			
	20 - 0	2	4	6	8	10	1
	30 -	\$		4	N1C_The	eoretical HR asured HR1	τ
8	40 -	S2C_Measured HRT					
D rem	50 -				S2C The	oretical HR	т
oval (60 -				~ `		
(%)	70 -	based on m (not theoret	neasured HR tical)	ŕ	a	A	
		Demessien	line (dashe	d)	R	$^{2} = 0.9931$	

Generation II (Gen II) MFCs

- Shown with 2 anodes, 2 cathodes
- Produced ~ 400 mW/m² with domestic wastewater

Gen III MFCs: Stay tuned!

He, Zhang, Logan (2014) In preparation

74

Conclusions

- New renewable energy technologies can be created using electroactive microorganisms:
 - Exoelectrogens- make electrical current
 - Electrotrophs- consume electrons, make H₂ and CH₄
- MFCs for wastewater treatment
 - <u>Cost</u>: Reduced to < 40 m^{-2}
 - <u>Materials</u>: Brush anodes; separator; Activated Carbon cathodes with stainless steel mesh current collectors, PVDF binder
 - Power: Don't try to fully treat wastewater; remove COD to about 100-150 mg/L
- + AFMBR
 - Add a secondary treatment system to remove COD to <20 mg/L
 - TSS < 1 mg/L, so no secondary clarifier needed

Thanks to students and researchers in the MxC team at Penn State!

Current research sponsors PENNSTATE SERDP/DOD (2012-2015); GCEP/Stanford (2012-2015); NREL/DOE (2014-2017); NSF SusChem-EAGER (2015-2016)

