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We’re here to help!
 Dr. Melton

 Office Hours: Monday 10 a.m. – noon, Tuesday       
1 – 3 p.m., or by appointment in 229B Hammond

 Email: rgmelton@psu.edu

 Brad
 Office Hours: Tuesday 11- 1 p.m., and by 

appointment in 234 Hammond. 
 Email: bsottile@psu.edu

We’re here to help you!
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The Final Exam
 Look over everything you know and have ever done in 

this class – quizzes, sample problems, readings, etc.
 The syllabus is a good place to start if you’re trying to 

remember everything we’ve covered.
 Just because I did or did not put something in this 

PowerPoint doesn’t mean it is or is not fair game. Try 
as I may, I can’t read Dr. Melton’s mind!

 Make use of our office hours!
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The Final Exam (Cont’d)
 Reminders: 

 We drop your lowest quiz score
 We do not curve either the exams or the course

 Ask questions if you need help! It’s never too late* 
to ask a question about course material!

 Time and Location: Wednesday, May 7th,            
10:10 – Noon in 22 BBH Building

 Exam covers everything in the course!

*Until we hand you the final exam
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What is Dynamics?
 Dynamics: The exchange, dissipation and addition 

of total energy
 Can be stored in different forms:

 Kinetic: Mass, Rotational
 Potential: Springs, Structures, Gravity Fields

 Energy can also be dissipated:
 Friction, drag, damping, etc.

 Equations of Motion (EOMs): The differential 
equations that describe the motion of a body or a 
dynamical system. 

 Response: The solution to the differential equations 
(EOMs). The number of EOMs is equal to the 
number of DOFs for any system!
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A note about linearity
 Most (interesting) systems are non-linear

 Why? Because the real world is complicated…
 Non-linear problems are generally very difficult to 

solve analytically and the principle of superposition 
generally does not hold for non-linear systems. 

 How do we over come this?
 Special Cases
 Linearize the system

 Binomial Expansions
 Series Expansion (e.g. Power Series, Taylor Series, etc.)

 Solve it numerically (solvers and methods include 
ODE45, Gauss-Jackson, Runge-Kutta, etc.)
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Unit Impulse
 By definition

 As a gets smaller, it approaches the Dirac 
Delta function

lim
௔→଴

ܨ ;ݐ ܽ ൌ නߜ ݐ ݐ݀	

;ݐሺܨ ܽሻ ൌ 	

ە
ۖ
۔

ۖ
ۓ 0, ݐ ൑

െܽ
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Dirac Delta
 Dirac Delta’s are impulse functions

ߜ ݐ ൌ 	 ൜ 0, ݐ	݂݅	 ് 0
∞, ݐ	݂݅	 ൌ 0
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Step function
 Definition

ݑ	ܽ ݐ െ ௢ݐ ൌ ܽ නߜ ݐ െ ௢ݐ ݐ݀	
௧

ିஶ

ݑ	ܽ ݐ െ ௢ݐ ൌ ൜0, ݐ	݂݅	 ൏ ௢ݐ
ܽ, ݐ	݂݅	 ൐ ௢ݐ

 Like in the homework, we can use step 
functions to create ramp functions
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Some old AERSP 309 concepts
 Particle Dynamics

Ԧݎ ൌ ଓ̂ݔ ൅ ଔ̂ݕ ൅ ݖ ෠݇
Ԧݒ ൌ ሶݔ ଓ̂ ൅ ሶݕ ଔ̂ ൅ ሶݖ ෠݇
Ԧܽ ൌ ሷݔ ଓ̂ ൅ ሷݕ ଔ̂ ൅ ሷݖ ෠݇

 Linear Momentum

ܮ ൌ Ԧݒ݉

 Angular Momentum

ܪ ൌ ߱ܫ

 Deformable Body
ሶ஻/஺ݎ ് 0
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Vector Derivatives
 This slide was copied from my AERSP 309 final exam review 

(this is still important material, though!)

 Derivatives of vectors in other frames of reference
 First Derivative

Ԧூݎ݀

ݐ݀ ൌ
Ԧ஻ݎ݀

ݐ݀ ൅ ߱஻/ூ ൈ Ԧݎ

 Second Derivative

݀ଶݎԦூ

ଶݐ݀ ൌ
݀ଶݎԦ஻

ଶݐ݀ ൅
݀߱஻/ூ

ݐ݀ ൈ Ԧݎ ൅ 2߱஻/ூ ൈ
Ԧ஻ݎ݀

ݐ݀ ൅ ߱஻/ூ ൈ ሺ߱஻/ூ ൈ Ԧሻݎ

Strategy: Never compute anything twice!
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Some E MCH Concepts
 Center of Mass (not to be confused with the 

center of gravity)

ݎ ൌ
1
݉
න ݉݀	Ԧݎ
௠

 Moments of Inertia – Can be tabulated into Inertia 
Tensors (Matrices)

஺஺ܫ ൌ න ݉݀	ଶݎ
௠

 Parallel Axis Theorem

௧௢௧௔௟ܫ ൌ ෍ሺܫ௜,௖௠ ൅ ݉௜ݎ௜ଶሻ
ே

௜ୀଵ
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Degrees of Freedom (DOF)
 Particle

݊௣ ൌ 3 െ ݇

 Rigid Body

݊௣ ൌ 6 െ ݇

 Total DOF for a System

݊௣,்௢௧௔௟ ൌ ෍݊௣,௜

ே

௜

k is the number of constraints
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Relationships
 Some useful relationships include:

ሻݐሺܨ ൌ ݔ∆݇

ሻݐሺܨ ൌ ݒ∆ܿ

ሻݐሺܨ ൌ ݐሺߜ	ܫ െ ௢ሻݐ

ܨ ݐ ൌ ݐሺݑ	௢ܨ െ ௢ሻݐ

஺ܯ ൌ െܭ௧ߠ
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Combinations
 Springs

Parallel: 	݇௘௤ ൌ ∑ ݇௜ே
௜ୀଵ

Series:				݇௘௤ ൌ
ଵ

∑ భ
ೖ೔

ಿ
೔సభ		

 Dampers
Parallel: 	ܿ௘௤ ൌ ∑ ܿ௜ே

௜ୀଵ

Series:		ܿ௘௤ൌ
ଵ

∑ 	 భ೎೔
ಿ
೔సభ

 Beware of springs or dampers that look to be in 
series but act in parallel (and vice-versa)
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D’Alembert’s Principle
 D’Alembert’s Principle allows you to 

convert a dynamics problem into a statics 
problem. Statics problems are usually 
easier to solve. 

෍ܨԦ ൌ ݉ Ԧܽ 		→ 		෍ܨԦ െ݉	 Ԧܽூ ൌ 0

෍ܯ ൌ
ܪ݀
ݐ݀ 		→ 		෍ܯ െ

ூܪ݀

ݐ݀ ൌ 0
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Free Body Diagrams
 These should be familiar from high school physics,        

PHYS 211, E MCH 210 (or E MCH 211), E MCH 212, etc. so I 
won’t belabor the point too hard. 

 Draw blocks to represent your figures
 You need some sort of sign convention
 Draw the directions in which the forces and/or moments 

are acting

෍ݔ݉:ܨሷ ൌ ଵܨ ൅ ଶܨ ൅	…	

෍ܯ: ሷߠܫ ൌ ଵܯ ൅ ଶܯ ൅	…

Remember: Moments and forces are related by the 
equation ܯ ൌ ݀ܨ (where d is your moment arm)
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Spring-Mass-Damper
 One of the most basic systems is the 

spring-mass-damper system

෍ܨ௫: ሷݔ݉		 ൌ 	െ݇ݔ െ ሶݔܿ ൅ ݂ሺݐሻ

Always watch your sign conventions!
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Single vs. Multiple DOF Systems

 SDOF System

ሷݔ݉ ൅ ሶݔܿ ൅ ݔ݇ ൌ ݂ሺݐሻ

 MDOF System

Ԧሷݔܯ ൅ Ԧሶݔܥ ൅ ݔܭ ൌ Ԧܨ ݐ

Be able to put MDOF Systems into matrix form! 
This shows up throughout the course (e.g. 
forming impedance matrices, etc.)
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Lagrange’s EOMs
 Suppose we have an n-DOF system, then

T = Kinetic Energy of the System
V = Potential Energy of the System

Qi = generalized external force

We can then form the Lagrangian
L ൌ ܶ െ ܸ
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Lagrange’s EOMs Cont’d
For i = 1, 2, … , n

Non-Conservative Systems:

݀
ݐ݀

ܮ߲
ሶ௜ݔ߲

െ
ܮ߲
௜ݔ߲

ൌ ܳ௜

Conservative Systems:

݀
ݐ݀

ܮ߲
ሶ௜ݔ߲

െ
ܮ߲
௜ݔ߲

ൌ 0
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What is Qi?
 ܳ௜ contains the generalized forces or 

moments that were not included in the 
Lagrangian. 

 Friction, forcing function, and any other 
velocity-dependent terms (including 
damping and drag) are included. 
 In other words, non-conservative effects are 

included

 We calculate ܳ௜ using the principle of virtual 
work.
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Principle of Virtual Work
 Imagine the system is in motion ሺݍ௜, ሶ௜ݍ are nonzero for 

i = 1,…, n). 
 At some time t, displace ݍ௜ by ݍߜ௜
 Then the virtual work done by the ܳ௜ is

ܹߜ ൌ෍ܳ௜ݍߜ௜

௡

௜ୀଵ
and

ܳ௜ ൌ
ܹߜ
௜ݍߜ

 Free body diagrams can help you figure out what is 
happening with the generalized forces.
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Laplace Transforms
 These apply only to linear systems (i.e. the 

EOMs must be linear)
 Laplace transforms permit us to solve 

(relatively difficult to solve) differential 
equations by converting them into (relatively 
simple to solve) algebraic equations. 

 This gives us a more mechanical (procedural) 
approach to these problems (as opposed to 
the more special case (“here’s how I 
approach this one particular kind of problem”) 
approach that many of you might have 
struggled with in MATH 250 or MATH 251)
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Laplace Transforms Cont’d
 Laplace Transforms can often be combined with other 

techniques such as partial fraction expansions or partial 
fraction decompositions

 Definitions:

ࣦሼ݂ ݐ ሽ ൌ න ݁ି௦௧݂ ݐ ݐ݀	
ஶ

଴
ൌ ሻݏሺܨ

ࣦିଵ ܨ ݏ ൌ
1
݅ߨ2

න 	݁௦௧ܨ ݏ ݏ݀	
ఊା௜ஶ

ఊି௜ஶ
ൌ ݂ሺݐሻ

 In practice, we don’t use these definitions (some of you 
tried to brute force these on the first midterm) – use look-
up tables instead! Sometimes you have to manipulate 
the expression to make it match up with what is in the 
table – this is generally not too bad to do. 
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The Beautiful Properties
of the Laplace Transformation

 Linearity (principle of superposition)
ࣦ ܽ	 ଵ݂ ݐ ൅ ܾ	 ଶ݂ ݐ ൌ ଵܨ	ܽ ݏ ൅ ሻݏଶሺܨ	ܾ

 Differentiation

ࣦ
݂݀ ݐ
ݐ݀ ൌ ܨ	ݏ ݏ െ ݂ 0

ࣦ
݀ଶ݂ ݐ
ଶݐ݀ ൌ ܨଶݏ ݏ െ ݂	ݏ 0 െ ݂′ሺ0ሻ

 Integration

ࣦ න݂ ݐ ݐ݀ ൌ
ሻݏሺܨ
ݏ

 Final Value Theorem
lim
௧→ஶ

ݔ ݐ ൌ lim
௦→଴

ሻݏሺܨ	ݏ
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Partial Fraction Decomposition 

ܺ ݏ ൌ ܴ ݏ
ܰ ݏ
ܦ ݏ

ܴሺݏሻ is a non-polynomial function of s
ܰሺݏሻ is a numerator polynomial of order p
ሻݏሺܦ is a denominator polynomial of order n

For a physical system, ݊	 ൒ ݌ but the case of 
݌ ൐ ݊ rarely happens. (If it does, Google™ it.)
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Partial Fractions Cont’d
 There are several cases you should be aware of 

(and know how to deal with)
 Distinct, real roots
 Complex roots (will always appear in complex 

conjugate pairs)
 Approach 1: Don’t factor it (solve for two unknowns)
 Approach 2: Treat as distinct roots
 Try using phasors! The math is much easier in many 

cases than trying to brute force the algebra. 
 Repeated real roots
 Combinations of these (you saw something like 

this on the second midterm)
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Transfer Functions

ܩ ݏ ൌ
ࣦሼݔ ݐ ሽ
ࣦሼ݂ ݐ ሽ ൌ

ܺሺݏሻ
ሻݏሺܨ

More generally, we can form a matrix

Ԧܺ ݏ ൌ ܭ ݏ ሻݏԦሺܨ

Remember what we did to find the system response 
if we had the transfer function and knew what the 
input was.  
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A Couple of Strategies for 
Working with Transfer Functions
 Polar form of complex numbers – sometimes is 

easier to work with mathematically
 Partial fraction decomposition – makes nasty 

fractions into smaller, easier to manage ones
 Laplace table – if your s-domain result looks 

like something from the table, use the table!
 Take advantage of mathematical tricks such 

as complex conjugates to save precious time
 Watch any/all quadrant checks!

Slide 33 of 54



System Inputs
Slide 34 of 54

 There are several different commonly seen 
inputs to a system
 Free Response: ܨ ݐ ൌ 0

 Typically with non-zero initial conditions. 
 Sometimes we’ll say “ignore initial conditions” – in this 

case, assume all necessary initial conditions are zero. 
You need to understand what’s going on with the 
transfer functions!

 Step input: ܨ ݐ ൌ ݐሺݑܣ െ ௢ሻݐ
 Impulse input: ܨ ݐ ൌ ݐሺߜܤ െ ௢ሻݐ
 Ramp Response: ܨ ݐ ൌ ܥ ݐ െ ଴,ଵݐ ݐሺݑ െ (଴,ଶݐ



Transient Response
 Some key definitions to know – these are all 

important characteristics of a system's response
 Final Value: The steady state or final value of the 

response of the system (can often be found via the 
final value theorem)

 2% Settling Time: Time it takes for the response to 
enter and stay within 2% of the final value

 10-90% Rise Time: Time it takes for the response to go 
from 10% to 90% of the final value

 Percent Overshoot: Percent of the max load of the 
input, calculated from the equation

௢ߟ ൌ 100%
௣௘௔௞ݔ െ ሺ0ሻܩ

ሻ݋ሺܩ
 Know the approximation formulas from the notes 
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Stability Analysis
 Couple different techniques

 Look at the poles of the system
 Routh’s Table/Criterion

 Number of sign changes is equal to the number of poles with 
positive real parts. We made heavy use of these!

 Graphical methods such as Root Locus, Bode plots or 
Nyquist plots. We talked about the first two of these, but be 
aware there are others used in the real world. 

 Stability Classifications
 Asymptotic stability

 Stable (decays to zero)
 Neutrally Stable (steady state) – often rather sensitive to 

perturbations that can lead to instability
 Unstable (blows up!)

 Stability isL (in the sense of Lyapunov)
 Many more definitions of stability exist in the literature.
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Stability and Relative Stability
 To make a system stable, you want all of 

the poles to be in the left half plane (i.e. 
have negative real parts)

 We can also say a system is stable relative 
to some (arbitrary) condition
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Root Locus
 Transfer function of the form

ܩ ݏ ൌ
ܺሺݏሻ
ሻݏሺܨ ൌ

ܰሺݏሻ
ሻݏሺܦ

 The denominator can be rewritten as

ܦ ݏ ൌ ܳ ݏ ൅ ܴܭ ݏ ൌ 0

 So what’s going on?
 ܭ ൌ 0 → Poles are roots of Q
 ܭ ൌ ∞ → Poles are roots of R
 Look at the Root Locus plot – see where the plot 

crosses the imaginary axis; look at the gain value K
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Second Order Systems
 Standard form of a differential equation

ሷݔ ൅ ሶݔ௡߱ߞ2 ൅ ߱௡ଶݔ ൌ
1
݂݉ሺݐሻ

 Transfer Function

ܩ ݏ ൌ
ݏܣ ൅ ܤ

ଶݏ ൅ ݏ௡߱ߞ2 ൅ ߱௡ଶ

 Motion Input

ሷݔ ൅ ሶݔ௡߱ߞ2 ൅ ߱௡ଶݔ ൌ ሶݕ௡߱ߞ2 ൅ ߱௡ଶݕ

 Poles of the transfer function

ଵ,ଶݏ ൌ െ߱ߞ௡ േ ߱௡ ଶߞ െ 1
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Second Order Systems Cont’d
 Undamped free response

ݔ ݐ ൌ ݐሺ߱௡݊݅ݏܣ ൅ ߶ሻ

 Underdamped free response

ݔ ݐ ൌ ݐௗ݁ି఍ఠ೙௧si݊ሺ߱ௗܣ ൅ ߶ሻ

 Critically damped free response

ݔ ݐ ൌ ݁ିఠ೙೟ ൅ ሶ௢ݔ ൅ ߱௡ݔ௢ ൅ ݁ିఠ೙೟

 Overdamped free response

ݔ ݐ ൌ
1

2 ଶߞ െ 1
ቊ ௢ݔ െߞ ൅ ଶߞ െ 1 െ

ሶ௢ݔ
߱௡

݁௦భ௧

൅ ௢ݔ ߞ ൅ ଶߞ െ 1 ൅
ሶ௢ݔ
߱௡

݁௦మ௧ቋ
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Higher Order Systems
 Recall that we write these equations as

Ԧሷݔܯ ൅ Ԧሶݔܥ ൅ ݔܭ ൌ Ԧܨ ݐ

 We can then form the impedance matrix

ܼ ݏ ൌ ଶݏܯ ൅ ݏܥ ൅ ܭ → ܼ ݏ ܺ ݏ ൌ ሻݏሺܨ

 Frequencies are found from the roots of 
the determinant equation
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Systems with Time Delay
 Response at a time t is affected by the 

system’s response at a previous time 
ݐ െ ߬	for a fixed value of ߬

 Use a modified version of the second 
shifting theorem

ࣦ ݔ ݐ െ ߬ ൌ ݁ିఛ௦ݔሺݏሻ
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State Space 
and Numerical Integration

 It’s hard to test you on numerical 
integration in a class like this. Instead, 
Focus on knowing how to put equations in 
State Space form
 We use State Space form for numerical 

integration and control analysis
 In essence, you convert higher-order linear 

or non-linear differential equations into first 
order differential equations (which in theory 
are easier to solve)

 No derivatives on the right hand side!
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State Space Example
 Assume we have an equation of the form

ഺݕܣ ൅ ሷݕܤ ൅ ሶݕܥ ൅ ݕܦ ൌ ݂ ݐ

where A, B, C and D are constants ߳	Թ

Dependent variable: y
Highest derivative: 3

1 state   x 3 derivatives   =   3 equations
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State Space 
Let

ଵݔ ൌ ݕ
ଶݔ ൌ ሶଵݔ ൌ ሶݕ
ଷݔ ൌ ሶଶݔ ൌ ሷݕ

Substituting, we then find

ሶଷݔܣ ൅ ଷݔܤ ൅ ଶݔܥ ൅ ଵݔܦ ൌ ݂ ݐ

Finally, we get

൞

ሶଵݔ ൌ ଶݔ
ሶଶݔ ൌ ଷݔ

ሶଷݔ ൌ
1
ܣ ݂ ݐ െ ଷݔܤ െ ଶݔܥ െ ଵݔܦ
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Steady-State 
Frequency Response

 Sinusoidal input

݂ ݐ ൌ ௢ܨ sinሺ߱ݐሻ

 We assume that our system is asymptotically stable, 
we can calculate

ܩ ݓ݅ ൌ ோܩ ൅ ூܩ݅

and

ሻݓሺ݅ܩ ൌ ோଶܩ ൅ ூଶܩ
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Steady-State 
Frequency Response Cont’d

 We need a quadrant check for the phase

߶ ൌ
tanିଵ

ூܩ
ோܩ

, ோܩ ൒ 0

tanିଵ
ூܩ
ோܩ

൅ ,ߨ 	 ோܩ ൏ 0

 Putting it all together, we have

௦ݔ ݐ ൌ ௢ܨ ሺ݅߱ሻܩ sinሺ߱ݐ ൅ ߶ሻ
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Bode Plots
 A Bode plot is a plot of 20	݈݃݋ ܩ and ϕ vs. ߱
 In class we discussed a procedure for 

sketching asymptotic Bode plots (we’ll handle 
special cases separately)

1. Convert ܩሺݏሻ from the form 
ܩ ݏ ൌ

ܭ ݏ ൅ ଵݖ ݏ ൅ ଶݖ 	⋯	ሺݏ ൅ ௠ሻݖ
ݏ ൅ ଵ݌ ݏ ൅ ଶ݌ 	⋯	ሺݏ ൅ ௡ሻݖ

to the form 

ܩ ݏ ൌ
ᇱܭ 1 ൅ ߬ଵᇱݏ 1 ൅ ߬ଶᇱ ݏ ⋯ ሺ1 ൅ ߬௠ᇱ ሻݏ
1 ൅ ߬ଵݏ 1 ൅ ߬ଶݏ ⋯ ሺ1 ൅ ߬௡ݏሻ
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Bode Plots Cont’d
 Procedure Cont’d

2. Calculate the corner frequencies 
3. Begin the Bode plots one decade below the 

lowest corner frequency. The starting amplitude is 
݃݋݈	20 ᇱܭ with a starting slope of 0 dB/dec.

4. At each corner frequency, the slope of the 
amplitude will change +20 dB/dec if the corner 
frequency is in the numerator and -20 dB/dec if the 
corner frequency is in the denominator. 

5. At each corner frequency, the magnitude of the 
phase will jump +90 deg if the corner frequency is 
in the numerator and -90 deg if the corner 
frequency is in the denominator

6. Continue plotting until you are at least one 
decade above the highest corner frequency
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Bode Plots Cont’d
 Procedure changes for special cases

 Separate factor of s in the denominator of G

ܩ ݏ ൌ
ᇱܭ 1 ൅ ߬ଵᇱ ݏ 1 ൅ ߬ଶᇱ ݏ ⋯ ሺ1 ൅ ߬௠ᇱ ሻݏ
௣ݏ 1 ൅ ߬ଵݏ 1 ൅ ߬ଶݏ ⋯ 1 ൅ ߬௡ݏ

Then start the amplitude plot with initial value     
20	 log ௄ᇲ

ఠ೚
೛ and with an initial slope of -20*p dB/dec.

The initial phase will be 90*p deg.

 Quadratic terms
If quadratic terms appear, the slope of the 

amplitude changes by േ40 dB/dec and the phase will 
shift by േ180 deg.
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Block Diagrams 
and Block Algebra

 Always reduce your answers as much as 
time allows!

 Steady state error calculations (error is a 
function of system type and input)
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Controller considerations
 P = proportional, D = derivative, I = integral
 Various Combinations: PI controller, PD

controller, PID controller, PID controller with 
filtering for the derivative action, …

 Tuning controllers is a bit of an inexact 
science (more on this in more advanced 
courses – for example, the Ziegler–Nichols 
tuning method)

 Routh tables are one approach, there are 
other methods you’ll learn in more 
advanced courses (Root Locus, other 
MATLAB tools, etc.)
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That’s all, folks!

 Thanks for being a good class this year 
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