AERSP 304
 Final Exam Review

Brad Sottile
Spring 2014

We're here to help!

- Dr. Melton
- Office Hours: Monday 10 a.m. - noon, Tuesday 1 - 3 p.m., or by appointment in 229B Ha mmond
- Email: rgmelton@psu.edu
- Brad
- Office Hours: Tuesday 11-1 p.m., a nd by a ppointment in 234 Hammond.
- Ema il: bsottile@psu.edu

We're here to help you!

The Final Exam

- Look over everything you know and have everdone in this class-quizzes, sample problems, readings, etc.
- The syllabus is a good place to start if you're trying to remember everything we've covered.
- Just because Idid or did not put something in this PowerPoint doesn't mean it is or is not fa ir game. Try asImay, Ican't read Dr. Melton's mind!
- Make use of our office hours!

The Final Exam (Cont'd)

- Reminders:
- We drop your lowest quizscore
- We do not curve either the examsor the course
- Ask questions if you need help! It's never too late* to ask a question about course material!
- Time and Location: Wednesday, May $7^{\text {th }}$, 10:10 - Noon in 22 BBH Building
- Exam covers everything in the course!
*Until we hand you the final exam

What is Dynamics?

- Dynamics: The exchange, dissipation and addition of total energy
- Can be stored in different forms:
- Kinetic: Mass, Rotational
- Potential: Springs, Struc tures, Gravity Fields
- Energy can also be dissipated:
- Friction, drag, damping, etc.
o Equations of Motion (EOMs): The differential equations that describe the motion of a body ora dyna mic al system.
- Response: The solution to the differential equations (EOMs). The number of EOMs is equal to the number of DOFs for a ny system!

A note about linearity

- Most (interesting) systems a re non-linear
- Why? Because the real world is complicated...
- Non-linear problems are generally very diffic ult to solve a nalytic ally and the principle of superposition generally does not hold for non-linear systems.
- How do we overcome this?
- Special Cases
- Linea rize the system
- Binomial Expansions
- Series Expansion (e.g. Power Series, Ta ylor Series, etc .)
- Solve it numeric ally (solvers and methods include ODE45, Gauss-J ackson, Runge-Kutta, etc.)

Unit Impulse

- By definition

$$
F(t ; a)= \begin{cases}0, & t \leq \frac{-a}{2} \\ \frac{1}{a}, & \frac{-a}{2}<t<\frac{a}{2} \\ 0, & t \geq \frac{a}{2}\end{cases}
$$

- As a gets smaller, it approachesthe Dirac Delta function

$$
\lim _{a \rightarrow 0} F(t ; a)=\int \delta(t) d t
$$

Dirac Delta

- Dirac Delta's are impulse functions

$$
\delta(t)= \begin{cases}0, & \text { if } t \neq 0 \\ \infty, & \text { if } t=0\end{cases}
$$

Step function

- Definition

$$
\begin{aligned}
& a u\left(t-t_{o}\right)=a \int_{-\infty}^{t} \delta\left(t-t_{o}\right) d t \\
& a u\left(t-t_{o}\right)= \begin{cases}0, & \text { if } t<t_{o} \\
a, & \text { if } t>t_{o}\end{cases}
\end{aligned}
$$

- Like in the homework, we can use step functions to create ramp functions

Some old AERSP 309 concepts

- Particle Dynamics

$$
\begin{aligned}
& \vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k} \\
& \vec{v}=\dot{x} \hat{\imath}+\dot{y} \hat{\jmath}+\dot{z} \hat{k} \\
& \vec{a}=\ddot{x} \hat{\imath}+\ddot{y} \hat{\jmath}+\ddot{z} \hat{k}
\end{aligned}
$$

- Linear Momentum

$$
\vec{L}=m \vec{v}
$$

- Angular Momentum

$$
\vec{H}=I \vec{\omega}
$$

- Deformable Body

$$
\dot{\bar{r}}_{B / A} \neq 0
$$

Vector Derivatives

- This slide was copied from my AERSP 309 final exam review (this is still important material, though!)
- Derivatives of vectors in other frames of reference - First Derivative

$$
\frac{{ }^{I} d \vec{r}}{d t}=\frac{{ }^{B} d \vec{r}}{d t}+\vec{\omega}^{B / I} \times \vec{r}
$$

- Second Derivative

$$
\frac{{ }^{I} d^{2} \vec{r}}{d t^{2}}=\frac{{ }^{B} d^{2} \vec{r}}{d t^{2}}+\frac{d \vec{\omega}^{B / I}}{d t} \times \vec{r}+2 \vec{\omega}^{B / I} \times \frac{{ }^{B} d \vec{r}}{d t}+\vec{\omega}^{B / I} \times\left(\vec{\omega}^{B / I} \times \vec{r}\right)
$$

Strategy: Nevercompute a nything twice!

Some EMCH Concepts

- Center of Mass (not to be confused with the center of gravity)

$$
\bar{r}=\frac{1}{m} \int_{m} \vec{r} d m
$$

- Moments of Inertia - Can be tabulated into Inertia Tensors (Matrices)

$$
I_{A A}=\int_{m} r^{2} d m
$$

- Parallel Axis Theorem

$$
I_{\text {total }}=\sum_{i=1}^{N}\left(I_{i, c m}+m_{i} r_{i}^{2}\right)
$$

Degrees of Freedom (DOF)

- Particle

$$
n_{p}=3-k
$$

- Rigid Body

$$
n_{p}=6-k
$$

- Total DOF for a System

$$
n_{p, \text { Total }}=\sum_{i}^{N} n_{p, i}
$$

k is the number of constra ints

Relationships

- Some useful relationships include:

$$
\begin{gathered}
F(t)=k \Delta x \\
F(t)=c \Delta v \\
F(t)=I \delta\left(t-t_{o}\right) \\
F(t)=F_{o} u\left(t-t_{o}\right) \\
M_{A}=-K_{t} \theta
\end{gathered}
$$

Combinations

- Springs

$$
\begin{aligned}
\text { Parallel: } & k_{e q}=\sum_{i=1}^{N} k_{i} \\
\text { Series: } & k_{e q}=\frac{1}{\sum_{i=1}^{N} \frac{1}{k_{i}}}
\end{aligned}
$$

- Dampers

$$
\begin{aligned}
& \text { Parallel: } c_{e q}=\sum_{i=1}^{N} c_{i} \\
& \text { Series: } c_{e q}=\frac{1}{\sum_{i=1}^{N} \frac{1}{c_{i}}}
\end{aligned}
$$

- Beware of springs or dampers that look to be in series but act in parallel (and vice-versa)

D'Alembert's Princ iple

- D'Alembert's Principle allows you to convert a dynamics problem into a statics problem. Statics problems are usually easierto solve.

$$
\begin{aligned}
& \sum \vec{F}=m \vec{a} \rightarrow \sum \vec{F}-m^{I} \vec{a}=0 \\
& \sum \vec{M}=\frac{d \vec{H}}{d t} \rightarrow \sum \vec{M}-\frac{I}{I} \vec{H} \\
& d t
\end{aligned}=00
$$

Free Body Diagrams

- These should be familia r from high school physics, PHYS 211, E MCH 210 (or E MCH 211), E MCH 212, etc. so I won't belabor the point too hard.
- Draw blocksto represent yourfigures
- You need some sort of sign convention
- Draw the directions in which the forces and/or moments are acting

$$
\begin{aligned}
& \sum F: m \ddot{x}=F_{1}+F_{2}+\ldots \\
& \sum M: I \ddot{\theta}=M_{1}+M_{2}+\ldots
\end{aligned}
$$

Remember: Moments and forces are related by the equation $M=F d$ (where d is your moment am)

Spring-Mass-Damper

- One of the most basic systems is the spring-mass-da mper system

$$
\sum F_{x}: m \ddot{x}=-k x-c \dot{x}+f(t)
$$

$$
\stackrel{\mathrm{X}}{\longrightarrow}
$$

frictionless

Always watch your sign conventions!

Single vs. Multiple DOF Systems

- SDOF System

$$
m \ddot{x}+c \dot{x}+k x=f(t)
$$

- MDOF System

$$
M \ddot{\vec{x}}+C \dot{\vec{x}}+K x=\vec{F}(t)
$$

Be able to put MDOF Systems into matrix form! This shows up throughout the course (e.g. forming impedance matrices, etc.)

Lagrange's EOMs

- Suppose we have an n-DOF system, then

T = Kinetic Energy of the System
$\mathrm{V}=$ Potential Energy of the System
$Q_{i}=$ generalized extemal force
We can then form the Lagrangian

$$
\mathrm{L}=T-V
$$

Lagrange's EOMsCont'd

For $\mathrm{i}=1,2, \ldots$, n

Non-Conservative Systems:

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{i}}\right)-\frac{\partial L}{\partial x_{i}}=Q_{i}
$$

Conservative Systems:

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{i}}\right)-\frac{\partial L}{\partial x_{i}}=0
$$

What is Q_{i} ?

- Q_{i} contains the generalized forces or moments that were not included in the Lagrangian.
- Friction, forcing function, and any other velocity-dependent terms (including damping and drag) are included.
- In otherwords, non-conservative effects are included
- We calculate Q_{i} using the principle of virtual work.

Princ iple of Virtual Work

- Imagine the system is in motion (q_{i}, \dot{q}_{i} are nonzero for $\mathrm{i}=1, \ldots, \mathrm{n}$).
- At some time t, displace q_{i} by δq_{i}
- Then the virtual work done by the Q_{i} is

$$
\delta W=\sum_{i=1}^{n} Q_{i} \delta q_{i}
$$

and

$$
Q_{i}=\frac{\delta W}{\delta q_{i}}
$$

- Free body diagrams can help you figure out what is happening with the generalized forces.

La place Transforms

- These a pply only to linear systems (i.e. the EOMs must be linear)
- La place tra nsforms permit us to solve (rela tively diffic ult to solve) differential equations by converting them into (relatively simple to solve) a lgebraic equations.
- This givesusa more mechanical (procedural) approach to these problems (asopposed to the more special case ("here'show I approach this one partic ular kind of problem") approach that many of you might have struggled with in MATH 250 or MATH 251)

La place Transforms Cont' d

- La place Transforms can often be combined with other tec hniques such aspartial fraction expa nsions or partial fraction decompositions
- Definitions:

$$
\begin{gathered}
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s) \\
\mathcal{L}^{-1}\{F(s)\}=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{s t} F(s) d s=f(t)
\end{gathered}
$$

- In practice, we don't use these definitions (some of you tried to brute force these on the first midterm) - use lookup tables instead! Sometimes you have to manipulate the expression to make it match up with what is in the table - this is generally not too bad to do.

The Beautiful Properties of the Laplace Transformation

- Linea rity (principle of superposition)

$$
\mathcal{L}\left\{a f_{1}(t)+b f_{2}(t)\right\}=a F_{1}(s)+b F_{2}(s)
$$

- Differentiation

$$
\begin{gathered}
\mathcal{L}\left\{\frac{d f(t)}{d t}\right\}=s F(s)-f(0) \\
\mathcal{L}\left\{\frac{d^{2} f(t)}{d t^{2}}\right\}=s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{gathered}
$$

- Integration

$$
\mathcal{L}\left\{\int f(t) d t\right\}=\frac{F(s)}{s}
$$

- Final Value Theorem

$$
\lim _{t \rightarrow \infty} x(t)=\lim _{s \rightarrow 0} s F(s)
$$

Partial Fraction Decomposition

$$
X(s)=R(s) \frac{N(s)}{D(s)}
$$

$R(s)$ is a non-polynomial function of s
$N(s)$ is a numerator polynomial of order p
$D(s)$ is a denominator polynomial of order n

For a physical system, $n \geq p$ but the case of $p>n$ rarely happens. (If it does, Google ${ }^{T M}$ it.)

Partial Fractions Cont'd

- There are several cases you should be aware of (and know how to deal with)
- Distinct, real roots
- Complex roots (will always a ppear in complex conjugate pairs)
- Approach 1: Don't factorit (solve fortwo unknowns)
- Approach 2: Treat asdistinct roots
- Try using phasors! The math is much easier in many cases than trying to brute force the algebra.
- Repeated real roots
- Combinations of these (you sa w something like this on the second midterm)

Transfer Functions

$$
G(s)=\frac{\mathcal{L}\{x(t)\}}{\mathcal{L}\{f(t)\}}=\frac{X(s)}{F(s)}
$$

More generally, we can form a matrix

$$
\vec{X}(s)=\underline{K}(s) \vec{F}(s)
$$

Remember what we did to find the system response if we had the transferfunction and knew what the input was.

A Couple of Strategies for Working with Transfer Functions

- Polar form of complex numbers - sometimes is easier to work with mathematic ally
- Pa rtial fraction dec omposition - makes na sty fractions into smaller, easier to manage ones
- Laplace table - if your s-doma in result looks like something from the table, use the table!
- Take advantage of mathematical tricks such ascomplexconjugates to save precioustime
- Watch any/all quadrant checks!

System Inputs

- There a re several different commonly seen inputs to a system
- Free Response: $F(t)=0$
- Typic ally with non-zero initial conditions.
- Sometimes we'll say "ignore initial conditions" - in this case, assume all necessary initial cond itions are zero. You need to understand what's going on with the transferfunctions!
- Step input: $F(t)=A u\left(t-t_{o}\right)$
- Impulse input: $F(t)=B \delta\left(t-t_{o}\right)$
- Ramp Response: $F(t)=C\left(t-t_{0,1}\right) u\left(t-t_{0,2}\right)$

Tra nsient Resp onse

- Some key definitions to know - these are all important charac teristic s of a system's response
- Final Value: The steady state or final value of the response of the system (can often be found via the final value theorem)
- 2% Settling Time: Time it ta kes for the response to enter and stay within 2% of the final value
- 10-90\% Rise Time: Time it takes for the response to go from 10% to 90% of the final value
- Percent Overshoot: Percent of the max load of the input, calculated from the equation

$$
\eta_{o}=100 \% \frac{x_{\text {peak }}-G(0)}{G(o)}
$$

- Know the approximation formulas from the notes

Sta bility Ana lysis

- Couple different techniques
- Look at the poles of the system
- Routh'sTable/Criterion
- Number of sign changes is equal to the number of poles with positive real parts. We made heavy use of these!
- Graphical methods such as Root Locus, Bode plots or Nyquist plots. We talked about the first two of these, but be a ware there are others used in the real world.
- Sta bility Classific ations
- Asymptotic stability
- Stable (decaysto zero)
- Neutrally Stable (stea dy state) - often rather sensitive to perturbations that can lead to instability
- Unstable (blows up!)
- Sta bility isL (in the sense of Lyapunov)
- Many more definitions of sta bility exist in the literature.

Stability and Relative Stability

- To make a system stable, you want all of the poles to be in the left half plane (ie. have negative real parts)
- We can also say a system is stable relative to some (arbitrary) condition

Root Locus

- Transferfunction of the form

$$
G(s)=\frac{X(s)}{F(s)}=\frac{N(s)}{D(s)}
$$

- The denominatorcan be rewritten as

$$
D(s)=Q(s)+K R(s)=0
$$

- So what's going on?
- $K=0 \rightarrow$ Poles are roots of Q
- $K=\infty \rightarrow$ Poles are roots of R
- Look at the Root Locusplot - see where the plot crosses the imagina ry axis; look at the gain value K

Second Order Systems

- Standard form of a differential equation

$$
\ddot{x}+2 \zeta \omega_{n} \dot{x}+\omega_{n}^{2} x=\frac{1}{m} f(t)
$$

- Transfer Function

$$
G(s)=\frac{A s+B}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

- Motion Input

$$
\ddot{x}+2 \zeta \omega_{n} \dot{x}+\omega_{n}^{2} x=2 \zeta \omega_{n} \dot{y}+\omega_{n}^{2} y
$$

- Poles of the transferfunction

$$
s_{1,2}=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1}
$$

Sec ond Order Systems C ont'd

- Undamped free response

$$
x(t)=A \sin \left(\omega_{n} t+\phi\right)
$$

- Underdamped free response

$$
x(t)=A_{d} e^{-\zeta \omega_{n} t} \sin \left(\omega_{d} t+\phi\right)
$$

- Critic ally damped free response

$$
x(t)=e^{-\omega_{n t}}+\left(\dot{x}_{o}+\omega_{n} x_{o}\right)+e^{-\omega_{n t}}
$$

- Overdamped free response

$$
\begin{aligned}
x(t)= & \frac{1}{2 \sqrt{\zeta^{2}-1}}\left\{\left[x_{o}\left(-\zeta+\sqrt{\zeta^{2}-1}\right)-\frac{\dot{x}_{o}}{\omega_{n}}\right] e^{s_{1} t}\right. \\
& \left.+\left[x_{o}\left(\zeta+\sqrt{\zeta^{2}-1}\right)+\frac{\dot{x}_{o}}{\omega_{n}}\right] e^{s_{2} t}\right\}
\end{aligned}
$$

Higher Order Systems

- Recall that we write these equationsas

$$
M \ddot{\vec{x}}+C \dot{\vec{x}}+K x=\vec{F}(t)
$$

- We can then form the impedance matrix

$$
Z(s)=M s^{2}+C s+K \rightarrow Z(s) X(s)=F(s)
$$

- Frequencies are found from the roots of the determinant equation

Systems with Time Delay

- Response at a time t is affected by the system's response at a previous time $t-\tau$ fora fixed value of τ
- Use a modified version of the second shifting theorem

$$
\mathcal{L}\{x(t-\tau)\}=e^{-\tau s} x(s)
$$

State Space a nd Numeric al Integration

- It's hard to test you on numerical integration in a class like this. Instead, Focus on knowing how to put equations in State Space form
- We use State Space form for numerical integration and control a nalysis
- In essence, you convert higher-order linear or non-linear differential equations into first orderdifferential equations (which in theory are easierto solve)
- No derivatives on the right ha nd side!

State Space Example

- Assume we have an equation of the form

$$
A \ddot{y}+B \ddot{y}+C \dot{y}+D y=f(t)
$$

where A, B, C and D are constants $\in \mathbb{R}$

Dependent variable: y
Highest derivative: 3
1 state $\times 3$ derivatives $=3$ equations

State Space

Let

$$
\begin{gathered}
x_{1}=y \\
x_{2}=\dot{x}_{1}=\dot{y} \\
x_{3}=\dot{x}_{2}=\ddot{y}
\end{gathered}
$$

Substituting, we then find

$$
A \dot{x}_{3}+B x_{3}+C x_{2}+D x_{1}=f(t)
$$

Finally, we get

$$
\left\{\begin{array}{c}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=x_{3} \\
\dot{x}_{3}=\frac{1}{A}\left[f(t)-B x_{3}-C x_{2}-D x_{1}\right]
\end{array}\right.
$$

Stea dy-Sta te Frequency Response

- Sinusoidal input

$$
f(t)=F_{o} \sin (\omega t)
$$

- We assume that our system is a symptotic ally stable, we can calculate

$$
G(i w)=G_{R}+i G_{I}
$$

and

$$
|G(i w)|=\sqrt{G_{R}^{2}+G_{I}^{2}}
$$

Steady-State

Frequency Response Cont'd

- We need a quadrant check forthe phase

$$
\phi=\left\{\begin{array}{cc}
\tan ^{-1}\left(\frac{G_{I}}{G_{R}}\right), & G_{R} \geq 0 \\
\tan ^{-1}\left(\frac{G_{I}}{G_{R}}\right)+\pi, & G_{R}<0
\end{array}\right.
$$

- Putting it all together, we have

$$
x_{s}(t)=F_{o}|G(i \omega)| \sin (\omega t+\phi)
$$

Bode Plots

- A Bode plot is a plot of $20 \log |G|$ and ϕ vs. ω
- In class we discussed a procedure for sketching asymptotic Bode plots (we'll handle special cases separately)

1. Convert $G(s)$ from the form

$$
G(s)=\frac{K\left(s+z_{1}\right)\left(s+z_{2}\right) \cdots\left(s+z_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right) \cdots\left(s+z_{n}\right)}
$$

to the form

$$
G(s)=\frac{K^{\prime}\left(1+\tau_{1}^{\prime} s\right)\left(1+\tau_{2}^{\prime} s\right) \cdots\left(1+\tau_{m}^{\prime} s\right)}{\left(1+\tau_{1} s\right)\left(1+\tau_{2} s\right) \cdots\left(1+\tau_{n} s\right)}
$$

Bode Plots Cont'd

- Procedure Cont'd

2. Calculate the comer frequencies
3. Begin the Bode plots one decade below the lowest comer frequency. The sta rting a mplitude is $20 \log \left|K^{\prime}\right|$ with a starting slope of $0 \mathrm{~dB} / \mathrm{dec}$.
4. At each comer frequency, the slope of the a mplitude will change $+20 \mathrm{~dB} / \mathrm{dec}$ if the comer frequency is in the numerator and $-20 \mathrm{~dB} / \mathrm{dec}$ if the comer frequency is in the denominator.
5. At each comer frequency, the magnitude of the phase will jump +90 deg if the comer frequency is in the numeratorand -90 deg if the comer frequency is in the denominator
6. Continue plotting until you are at least one decade above the highest comer frequency

Bode Plots Cont'd

- Procedure changesforspecial cases
- Separate factor of s in the denominator of G

$$
G(s)=\frac{K^{\prime}\left(1+\tau_{1}^{\prime} s\right)\left(1+\tau_{2}^{\prime} s\right) \cdots\left(1+\tau_{m}^{\prime} s\right)}{s^{p}\left(1+\tau_{1} s\right)\left(1+\tau_{2} s\right) \cdots\left(1+\tau_{n} s\right)}
$$

Then start the a mplitude plot with initial value $20 \log \left(\frac{K^{\prime}}{\omega_{o}^{p}}\right)$ and with an initial slope of $-20^{*} \mathrm{p} \mathrm{dB} / \mathrm{dec}$. The initial phase will be 90*p deg.

- Quadratic tems

If quadratic terms appear, the slope of the amplitude changes by $\pm 40 \mathrm{~dB} / \mathrm{dec}$ and the phase will shift by ± 180 deg.

Block Diagrams and Block Algebra

- Always reduce your answers as much as time allows!
- Steady state error calculations (error is a function of system type and input)
- Summing junction

- negative summation

Controller considerations

- $P=$ proportional, $D=$ derivative, $I=$ integral
- Va rious C ombinations: PI controller, PD c ontroller, PID c ontroller, PID controller with filtering for the derivative action, ...
- Tuning controllers is a bit of an inexact science (more on this in more advanced courses - for example, the Zegler-Nic hols tuning method)
- Routh tables are one approach, there are other methods you'll leam in more advanced courses (Root Locus, other MATLAB tools, etc.)

That's a ll, folks!

- Thanks for being a good class this year ©

