AERSP 309 Astronautics Final Exam Review

Brad Sottile
Fall 2013

Office Hours

- Dr. Melton
- Available by email (rgmelton@psu.edu)
- Brad
- Possibly a va ilable by appointment (email to inquire) a nd by email (bsottile@psu.edu)

We're here to help you!

The Final Exam

- Look over everything you know and have everdone in this class - quizes, exams, homework, sample problems, readings, etc.
- The syllabus is a good place to start if you're trying to remember everything we've covered.
- Just because Idid ordid not put something in this PowerPoint doesn't mean it is or is not fa ir game. Try asImay, Ican't read Dr. Melton's mind!
- Be ready to work open-ended problems (like the examsso far), but be ready forconceptional problems (like the weekly quizzes).

The Final Exam (Cont'd)

- Reminders:
- We drop your lowest quiz score
- We don't drop any of the homework
- We do not curve either the exams or the course
- Ask questions if you need help! It's never too late* to ask a question about course material!
- Time and Location: Monday, December 16 ${ }^{\text {th }}$, 8:00-9:50 a .m. in 22 BBH Build ing
- Exam covers everything in the course!
*Until we hand you the final exam

1. 3D Kinematics

- Direction Cosine Matrices (DCMs)
- You need to absolutely know how to manipulate matrices(orbe able to reference your equation sheet). Be able to do them symbolic ally a nd numeric ally!
- Be careful with multiplying matrices-students usua lly make mistakes with this.
- Know what an inverse is, how to take transposes, etc.
- Know if your result is suppose to be a scalar, vector, matrix, etc.

Matrix multiplication

$$
\left[\begin{array}{l:l:l}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} & a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32} & a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33} \\
a_{31} b_{11}+a_{32} b_{21}+9_{33} b_{31} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32} & a_{31} b_{13}+a_{32} b_{23}+a_{33} b_{33}
\end{array}\right]
$$

$\left[\begin{array}{ll}a_{12} & a_{13} \\
a_{22} & a_{23} \\
a_{32} & a_{33}\end{array}\right]\left[\begin{array}{l}b_{1} \\
b_{2} \\
b_{3}\end{array}\right]=\left[\begin{array}{l}a_{11} b_{1}+a_{12} b_{2}+a_{13} b_{3} \\
a_{21} b_{1}+a_{22} b_{2}+a_{23} b_{3} \\
a_{31} b_{1}+a_{32} b_{2}+a_{33} b_{3}\end{array}\right]$

(3×3)	(3×1)
Refined	Result

1. 3D Kinematics

- DCMsCont'd
- Some vocabulary
- Dextral: Right Handed
- Orthogonal: Perpendicular
- Normal: Unit Length
- Two waysto describe the orientation of Frame B with respect to Frame A
- Specify the angles between everything - this gives you 9 angles
- Write the \hat{b} vectors in terms of the \hat{a} vectors

1. 3D Kinematics

- DCMsCont'd
- Vector Projection - The dot products are all cos(). These are known as direction cosines!

$$
\begin{array}{cc}
\text { e.g. } & \hat{b}_{1} \cdot \hat{a}_{1}=\left|\hat{b}_{1}\right|\left|\hat{a}_{1}\right| \cos \alpha=\cos \alpha \\
{\left[\begin{array}{l}
\hat{b}_{1} \\
\hat{b}_{2} \\
\hat{b}_{3}
\end{array}\right]=\left(\begin{array}{lll}
\hat{b}_{1} \cdot \hat{a}_{1} & \hat{b}_{1} \cdot \hat{a}_{2} & \hat{b}_{1} \cdot \hat{a}_{3} \\
\hat{b}_{2} \cdot \hat{a}_{1} & \hat{b}_{2} \cdot \hat{a}_{2} & \hat{b}_{2} \cdot \hat{a}_{3} \\
\hat{b}_{3} \cdot \hat{a}_{1} & \hat{b}_{3} \cdot \hat{a}_{2} & \hat{b}_{3} \cdot \hat{a}_{3}
\end{array}\right)\left[\begin{array}{l}
\hat{a}_{1} \\
\hat{a}_{2} \\
\hat{a}_{3}
\end{array}\right]}
\end{array}
$$

1. 3D Kinematics

- DCMsCont'd
- Remember our notation:

$$
\left[\begin{array}{l}
\hat{b}_{1} \\
\hat{b}_{2} \\
\hat{b}_{3}
\end{array}\right]=\underline{C}^{A B}\left[\begin{array}{l}
\hat{a}_{1} \\
\hat{a}_{2} \\
\hat{a}_{3}
\end{array}\right] \quad \text { or } \quad \underline{b}=\underline{C}^{A B} \underline{a}
$$

- $C_{i j}^{A B}=\hat{b}_{i} \cdot \hat{a}_{j}$ is the direction cosine of \hat{b}_{i} with respect to \hat{a}_{j}

1. 3D Kinematics

- DCMsCont'd
- Properties
- $\underline{C}^{-1}=\underline{C}^{T}$
- $\underline{C} \underline{C}^{-1}=\underline{C} \underline{C}^{T}=\underline{C}^{-1} \underline{C}=\underline{C}^{T} \underline{C}=\underline{1}$
- $\operatorname{det}(\underline{C})=+1$ iff (if and only if) both coordinate systems have the same handedness.
- To build a DCM using multiple rotations, you must multiply in reverse order.
- Order matters! (Unless the rotation angles a re "sma ll.")

1. 3D Kinematic s

- Rotations about the principal axes-Any new orientation can be generated by at most 3 rotations

$$
\begin{aligned}
& \underline{C_{1}}(\psi)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\psi) & \sin (\psi) \\
0 & -\sin (\psi) & \cos (\psi)
\end{array}\right) \\
& \underline{C_{2}}(\theta)=\left(\begin{array}{ccc}
\cos (\theta) & 0 & -\sin (\theta) \\
0 & 1 & 0 \\
\sin (\theta) & 0 & \cos (\theta)
\end{array}\right) \\
& \underline{C}_{3}(\phi)=\left(\begin{array}{ccc}
\cos (\phi) & \sin (\phi) & 0 \\
-\sin (\phi) & \cos (\phi) & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

1. 3D Kinematics

- Vector Components in Different

Coordinate Systems

- You have two options for expressing a vector in terms of a nother coordinate system: Both require you to use a DCM.
- Convert the new unit vectors into your old frame
- Convert the components into the other frame

But do not do both! You'll get junk answers.

1. 3D Kinematic s

- Angular Velocity is the time rate of change (i.e. derivative) of an angle.
- As you saw in E MCH 212 and in this class, you can add these to get relative a ngular velocities.
- Everything in life is relative:
- You stand on a memy-go-round/carousel/spinning disk. You select your fa vorite pony and get ready for the ride to start. Your friend suddenly realizes the ride is too scary for him or her and he or she decides to wait by the fence. The ride starts and your pony goes up and down while the memy-go-round rotates. How does your perception of your movement differ from your friend's perception of your movement?

1. 3D Kinematics

- Derivatives of vectors in other frames of reference
- First Derivative

$$
\frac{{ }^{I} d \vec{r}}{d t}=\frac{{ }^{B} d \vec{r}}{d t}+\vec{\omega}^{B / I} \times \vec{r}
$$

- Second Derivative

$$
\frac{{ }^{I} d^{2} \vec{r}}{d t^{2}}=\frac{{ }^{B} d^{2} \vec{r}}{d t^{2}}+\frac{d \vec{\omega}^{B / I}}{d t} \times \vec{r}+2 \vec{\omega}^{B / I} \times \frac{{ }^{B} d \vec{r}}{d t}+\vec{\omega}^{B / I} \times\left(\vec{\omega}^{B / I} \times \vec{r}\right)
$$

Strategy: Never compute a nything twice!

1. 3D Kinematics

$$
\frac{{ }^{B} d^{2} \vec{r}}{d t^{2}}=\frac{{ }^{I} d^{2} \vec{r}}{d t^{2}}-\frac{d \vec{\omega}^{B / I}}{d t} \times \vec{r}-2 \vec{\omega}^{B / I} \times \frac{{ }^{B} d \vec{r}}{d t}-\vec{\omega}^{B / I} \times\left(\vec{\omega}^{B / I} \times \vec{r}\right)
$$

1. Acceleration of object in frame B
2. Inertial Acceleration $=\frac{\vec{F}}{m}$ (Remember: Newton's Laws only apply in inertial frames of reference).
3. Euler Acceleration
4. Coriolis Acceleration
5. Centrifugal Acceleration ("Center Fleeing")

Note the signs: The book is wrong about this! Remember concepts such as "deep space," etc.

2. 3D Particle Dynamics

- Gravitational Force acting on m_{2}

$$
\vec{F}_{2}=\frac{-G m_{1} m_{2}}{r^{2}} \hat{\imath}_{r}=\frac{-G m_{1} m_{2} \vec{r}}{r^{3}}
$$

2. 3D Particle Dynamics

- Gravita tional Potential Energy
- Work done by an extemal force to move m_{2} out to ∞ is $W=\int \vec{F} \cdot d \vec{s}$ where \vec{F} is the force needed to cancel the gravitational attraction to m_{1}.

2. 3D Particle Dynamics

- Gravitational Potential Energy Cont'd
- That force is

$$
\vec{F}=\frac{G m_{1} m_{2} \vec{r}}{r^{3}}
$$

- Doing the integration, you get

$$
W=\frac{G m_{1} m_{2}}{r}
$$

- Gravitational Potential energy is defined as work done to move m_{2} from ∞ to distance rfrom m_{1}, therefore we get
$\mathcal{V}=-W=-\frac{G m_{1} m_{2}}{r} \approx m g h$ (only close to the earth!)

2. 3D Particle Dynamics

- Vis-Viva Integral

$$
\varepsilon=\frac{v^{2}}{2}-\frac{\mu}{r}=-\frac{\mu}{2 a}
$$

- Angular Momentum of a particle

$$
\vec{h}=\vec{r} \times \vec{v} \text { or } h=|\vec{r} \times \vec{v}|=r v \cos (\phi)=r^{2} \dot{\theta}
$$

Note the quadrant correction:
If $\dot{r}>0, \phi$ is positive. If $\dot{r}<0, \phi$ is negative

- Orbital Coordinates

$$
\hat{\imath}_{r}=\frac{\vec{r}}{r} \quad \hat{\imath}_{\theta}=\hat{\imath}_{Z} \times \hat{\imath}_{r} \quad \hat{\imath}_{Z}=\frac{\vec{h}}{h}
$$

- $\hat{\imath}_{r}$ - radial direction, $\hat{\imath}_{\theta}$ - transverse direction

Figure 1.4-1 Flight-path angle, ϕ
Source: [1] on p. 17

Figure 1-10. Geometry for the Flight-path Angle. The flight-path angle is always measured from the local horizontal to the velocity vector. It's always positive while the satellite travels from periapsis to apoapsis and negative for travel from apoapsis to periapsis. I've exaggerated the diagram for clarity.

2. 3D Particle Dynamics

Hey, speaking of Quadrant Checks...

You should really do them.
(See the general tutorial and the Quadrant Corrections for Orbital Mechanic shandouts)

2. 3D Particle Dynamics

- Inertial Velocity of m_{2}

$$
\frac{{ }^{I} d \vec{r}}{d t}=\dot{r} \hat{\imath}_{r}+r \dot{\theta} \hat{\iota}_{\theta}
$$

- Eccentricity Vector

$$
\vec{e}=\frac{\vec{v} \times \vec{h}}{\mu}-\frac{\vec{r}}{r}
$$

2. Particle Dynamics

- Be careful with notational issues!

$$
\begin{gathered}
\dot{r}=\frac{d r}{d t} \neq\left|\frac{d \bar{r}}{d t}\right| \\
\frac{d \bar{r}}{d t}=\bar{v}=\dot{r} \hat{\imath}_{r}+r \dot{\theta} \hat{\imath}_{\theta} \\
\left|\frac{d \bar{r}}{d t}\right|=\sqrt{\left(\dot{r} \hat{\imath}_{r}\right)^{2}+\left(r \dot{\theta} \hat{\imath}_{\theta}\right)^{2}} \neq \dot{r}
\end{gathered}
$$

2. Partic le Dynamics

- A few more helpful relations
- Speed of a satellite on a circularorbit

$$
v_{c}=\sqrt{\frac{\mu}{r}}
$$

- Escape Velocity

$$
v_{e s c}=\sqrt{\frac{2 \mu}{r}}
$$

- Semi-latus Rectum

$$
p=\frac{h^{2}}{\mu}=a\left(1-e^{2}\right)
$$

2. Partic le Dynamics

- Transverse Velocity Component

$$
v_{\theta}=r \dot{\theta}=\frac{h}{r}
$$

- Another expression for eccentricity

$$
e=\sqrt{1+\frac{2 p \varepsilon}{\mu}}
$$

Ellipse $(0<e<1)$
$F=$ focus (grave. center)

3. Two-Body Orbital Mechanics

- The Orbit Equation

$$
r=\frac{p}{1+e \cos \theta}
$$

- Conic Sections

Orbit Type	Eccenticity	Semi-Major Axis	Energy
Circle	$e=0$	$a>0$	$\varepsilon<0$
Ellipse	$0<e<1$	$a>0$	$\varepsilon<0$
Parabola	$e=1$	$a=\infty$	$\mathcal{E}=0$
Hyperbola	$e>1$	$a<0$	$\varepsilon>0$

Skill to know

- Be able to generate new equations
- For example, find an expression for the eccentricity of an orbit in terms of only the apse radii.

Proof that $e=f\left(r_{p}, r_{a}\right)$

- Start from the orbit equation

$$
r=\frac{p}{1+e * \cos (\theta)}
$$

- For periapsis, $\theta=0^{\circ}$

$$
r_{p}=\frac{p}{1+e}
$$

- Forapoapsis, $\theta=180^{\circ}$

$$
r_{a}=\frac{p}{1-e}
$$

Proof that $e=f\left(r_{p}, r_{a}\right)$ Cont'd

- Solve for semi-latus rectum

$$
\begin{aligned}
& p=r_{p}(1+e) \\
& p=r_{a}(1-e)
\end{aligned}
$$

- Equate the two expressions

$$
r_{p}(1+e)=r_{a}(1-e)
$$

Proof that $e=f\left(r_{p}, r_{a}\right)$ Cont'd

- Manipulate this algebraic ally now

$$
r_{p}+e * r_{p}=r_{a}+e * r_{a}
$$

- Bring all of eccentric ities over to one side

$$
\begin{gathered}
e * r_{a}+e * r_{p}=r_{a}-r_{p} \\
e\left(r_{a}+r_{p}\right)=r_{a}-r_{p} \\
e=\frac{r_{a}-r_{p}}{r_{a}+r_{p}}
\end{gathered}
$$

3. Two-Body Orbital Mechanics

- Kepler'sLaws
- 1. Spacecraft move on an elliptical path with gravitational source at one focus
- 2. Radius vector sweeps out equal areas in equal a mounts of time
- 3. Period Equation: $T=2 \pi \sqrt{\frac{a^{3}}{\mu}}$
- Excess Hyperbolic Velocity

$$
v_{\infty}=\sqrt{2 \varepsilon} \quad(\text { at } \infty)
$$

3. Two-Body Orbital Mechanics

- Kepler'sTime Equation

$$
\begin{gathered}
M=E-e * \sin (E) \\
M=\sqrt{\frac{\mu}{a^{3}}}\left(t-T_{o}\right)=\sqrt{\frac{\mu}{a^{3}}}\left(t-T_{p}\right)=\sqrt{\frac{\mu}{a^{3}}} \Delta t
\end{gathered}
$$

3. Two Body Orbital Mechanics

o e.g. Newton-Rhapson

$$
\begin{gathered}
f(E)=E-e * \sin (E)-M=0 \\
f^{\prime}(E)=1-e * \cos (E) \\
E_{\text {new }}=E_{\text {old }}-\frac{f\left(E_{\text {old }}\right)}{f^{\prime}\left(E_{\text {old }}\right)}
\end{gathered}
$$

3. Two Body Orbital Mechanics

- Classic al Orbital Elements

Source: [3] on p. 65.

Figure 2.10: The classical orbital elements.

Various symbols are used in the literature to denote true anomaly common ones include θ (which we've been using in class), v ("nu," as shown in this figure but can be easily be confused for velocity v), and f.

3. Two Body Orbital Mechanics

- Perifocal Coordinates

$$
\begin{gathered}
\vec{r}^{P}=r \cos \theta \hat{p}+r \sin \theta \hat{q}+0 \widehat{w} \\
\vec{v}^{P}=-\sqrt{\frac{\mu}{p}} \sin \theta \hat{p}+\sqrt{\frac{\mu}{p}}(\mathrm{e}+\cos \theta) \hat{q}+0 \widehat{w}
\end{gathered}
$$

- To convert from ECI to Perifocal Coordinates

$$
\underline{C}^{E P}=\underline{C}_{3}(\omega) \underline{C}_{1}(i) \underline{C}_{3}(\Omega)
$$

- To convert from Perifocal to ECI Coordinates

$$
\underline{C}^{P E}=\left(\underline{C}^{E P}\right)^{T}
$$

4. Orbital Maneuvers and Transfers

- Hohmann Transfer

4. Orbital Ma neuvers a nd Tra nsfers

- Hohmann Transfer Cont'd
- Minimizes Δv but maximizes time
- You need to calculate four velocities
- $v_{\text {inner }}=$ Velocity on inner circular orbit
- $v_{\text {outer }}=$ Velocity on outer circ ular orbit
- $v_{p}=$ Velocity at peria psis of the Hohmann ellipse
- $v_{a}=$ Velocity at apoapsis of the Hohmann ellipse

$$
\begin{gathered}
\Delta v_{\text {total }}=\left|v_{p}-v_{\text {inner }}\right|+\left|v_{\text {outer }}-v_{a}\right| \\
T_{x f e r}=\frac{1}{2} T_{H}=\pi \sqrt{\frac{a_{H}^{3}}{\mu}}=\pi \sqrt{\frac{\left(r_{\text {inner }}+r_{\text {outer }}\right)^{3}}{8 \mu}}
\end{gathered}
$$

- Remember, you can't have negative Δv !

4. Orbital Maneuvers and Transfers

- Impulsive a pproximation
- An object's position does not change during the short time that a force is applied to change the object's velocity
- In reality, the position doeschange but not signific a ntly
- $\Delta \vec{v}$ in general will involve:

Change in magnitude of \vec{v}
or

Change in the direction of \vec{v}
or

Change in magnitude and direction of \vec{v}

4. Orbital Maneuvers a nd Transfers

- Law of Cosines - collapsesto the Pythagorean Theorem when the angle is 90 deg. (math is cool!)

- What happens if the line of a psides does not rotate? θ doesn't change!
where $\Delta \gamma=\gamma_{2}-\gamma_{1}$. Therefore, the formula for Δv without plane change is

$$
\begin{equation*}
\Delta v=\sqrt{v_{1}^{2}+v_{2}^{2}-2 v_{1} v_{2} \cos \Delta \gamma} \text { (impulsive maneuver, coplanar orbits) } \tag{6.8}
\end{equation*}
$$

FIGURE 6.14

Vector diagram of the change in velocity and flight path angle at the intersection of two orbits (plus a reminder of the law of cosines).

4. Orbital Maneuvers and Transfers

- Pure Inclination Change

4. Orbital Ma neuvers a nd Transfers

- Pure Inclination Change Cont'd

$$
\begin{gathered}
\Delta v=\sqrt{v_{\theta}^{2}+v_{\theta}^{2}-2 v_{\theta} v_{\theta} \cos (\Delta i)} \\
=v_{\theta} \sqrt{2(1-\cos \Delta i)} \\
=2 v_{\theta} \sin \left(\frac{\Delta i}{2}\right)
\end{gathered}
$$

- Remember, v_{θ} is the transverse velocity component

$$
v_{\theta}=\frac{h}{r}
$$

4. Orbital Ma neuvers a nd Transfers

- Non-Keplerian Orbits
- Influenced by forces in addition to the central gravitational source
- Examples
- Atmospheric Drag

$$
\vec{F}_{D}=-\frac{1}{2} \rho v^{2} A_{r e f} C_{d} \frac{\vec{v}}{v}
$$

- Spacecraft is using propulsive thrust
- Spacecraft is experience the effects of Earth's oblateness

4. Orbital Maneuvers and Transfers

- The earth is really not a sphere.
- It is oblate
- We model this phenomena as an extra band of mass near the equator
- Oblateness causes the ascending node to move westward (known as regression of the node)

$$
\begin{gathered}
\left(\frac{d \Omega}{d t}\right)_{a v g}=\frac{-3 \sqrt{\mu} J_{2} R_{\oplus}^{2}}{2 a^{\frac{7}{2}}\left(1-e^{2}\right)^{2}} \operatorname{cosi} \\
\left(\frac{d \omega}{d t}\right)_{a v g}=\frac{-3 \sqrt{\mu} j_{2} R_{\oplus}^{2}}{2 a^{\frac{7}{2}}\left(1-e^{2}\right)^{2}}\left(\frac{5}{2} \sin ^{2} i-2\right)
\end{gathered}
$$

4. Orbital Ma neuvers and Transfers

- Orbits
- LEO - Low Earth Orbit
- Think Intemational Space Station (ISS) or the Space Shuttle
- MEO - Middle Earth Orbit
- GEO - Geostationary Equatorial Orbit
- Inclination of about zero degrees
- Circular
- Period is equal to Earth's rotational period with respect to inertial frame of reference
- Molniya Orbit
- Russian for "lightening"
- Period of 12 hours
- What's in a day?
- 1 solarday $=24$ hours
- 1 sidereal day $=23$ hours, 56 minutes and 4 seconds

4. Orbital Maneuvers a nd Transfers

- Sun-Sync hronous Orbit

$$
\left(\frac{d \Omega}{d t}\right)_{\text {avg }}=\frac{2 \pi \mathrm{rad}}{\text { year }}
$$

- The ascending node must move eastward
- Low Thrust Orbit Transfer

$$
\Delta t=t-t_{o} \approx \frac{\sqrt{\mu}}{\frac{F_{T}}{m}}\left(\frac{1}{\sqrt{a_{o}}}-\frac{1}{\sqrt{a}}\right)
$$

- Escape Condition: $\varepsilon=0$

4. Orbital Maneuvers and Transfers

 Hey, did you know that...
Center of Mass DOES NOTEQUAL Center of Gravity! (generally)

Make sure you know how to calculate both!

4. Orbital Maneuvers a nd Transfers

- Also, while we're in the neighborhood of not doing things, don't forget that...

Potential Energy DOES NOTEQUAL mgh!

- It's just an a pproximation that is only valid near the earth's surface. Airc raft and objects below the altitude of airc raft can get a way with using it; spacecraft cannot. You'll hear more about this in AERSP 306 Aeronautics.

5. Rigid Body Dynamics

- Rigid Body: An object with physical extent (i.e. not a particle) that has no flexibility.
- Chasles's Theorem
- The translational motion of an object with respect to an inertial frame of reference N can be treated separately from the rotational motion of the object with respect to N .

5. Rigid Body Dynamics

- Inertia Matrix (Tensor)

$$
\underline{I}=\left[\begin{array}{lll}
I_{11} & I_{12} & I_{13} \\
I_{21} & I_{22} & I_{23} \\
I_{31} & I_{32} & I_{33}
\end{array}\right]
$$

- Properties
- The matrix is symmetric
- Diagonal elements are alwa ys greater than or equal to 0
- Off-diagonal elements can be positive, negative or 0
- Units are often $\mathrm{kg} \cdot \mathrm{m}^{2}$

5. Rigid Body Dynamics

- Angular Momentum Vector

$$
\underline{H}=\left[\begin{array}{l}
H_{1} \\
H_{2} \\
H_{3}
\end{array}\right]
$$

- Angular Velocity Vector

$$
\underline{\omega}=\left[\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right]
$$

5. Rigid Body Dynamics

- To calculate \underline{H}, you solve

$$
\underline{H}=\underline{I \omega}
$$

- Energy of Rotation

$$
T_{r o t}=\frac{1}{2} \underline{\omega}^{T} \underline{I \omega}=\frac{1}{2} \underline{\omega}^{T} \underline{H}
$$

- "Find the angle:" Between \underline{H} and $\underline{\omega}$

$$
\cos (\theta)=\frac{\vec{H} \cdot \vec{\omega}}{|\vec{H}||\vec{\omega}|}
$$

Are you inertially fixed?

5. Rigid Body Dynamics

- Dia gonalizing the inertia tensor
- Find the eigenvalues of the inertia tensor
- Use those eigenvaluesto generate eigenvectors
- Use the simila nity transformation to transform from the arbitrary to the principal axis system.
- Don't forget to check the cross product!
- In this class, be fa miliar with how this process works but absolutely be solid with how to construct the DCM from the eigenvectors.
- In more advanced courses (e.g. AERSP 450), you'll be expected to do the diagonalization by hand.
- Simila rity Transformation

$$
\underline{I}^{B}=\underline{C}^{A B} \underline{\underline{I}}^{A} \underline{C}^{B A}
$$

5. Rigid Body Dynamics

- Properties of Principal Axes
- Principal axes always exist for a real physic al object
- For any plane of symmetry (with respect to the mass distribution) one principal axis is pemendicular to the plane of symmetry and the other two principal axes lie in the plane of symmetry
- The sum of any two principal moments of inertia are greater than the third.
- $\operatorname{tr} I^{B}=\operatorname{tr} I^{B \prime}=I_{1}+I_{2}+I_{3}=I_{11}+I_{22}+I_{33}$
- Don't forget we can also use the parallel axis theorem!

5. Rigid Body Dynamics

- Euler's Equations for Rigid Body Motion

$$
\begin{aligned}
& M_{1}=I_{1} \dot{\omega}_{1}+\omega_{2} \omega_{3}\left(I_{3}-I_{2}\right) \\
& M_{2}=I_{2} \dot{\omega}_{2}+\omega_{3} \omega_{1}\left(I_{1}-I_{3}\right) \\
& M_{3}=I_{3} \dot{\omega}_{3}+\omega_{1} \omega_{2}\left(I_{2}-I_{1}\right)
\end{aligned}
$$

- Non-linear and coupled differential equations
- No general solution exists but just like for the Na vierStokes equations we can solve some specific cases
- This is just a nother way of saying

$$
\vec{M}=\frac{I}{} d \vec{H}
$$

5. Rigid Body Dynamics

5. Rigid Body Dynamics

- Body cones
- Gyroscopic stiffness
- Stability of rotation a round the principal axes
- Make sure you know and understand what happened to Explorer 1
- The axis of the intermediate moment of inertia is absolutely unstable
- Minimum moment of inertia is okay... until the satellite gets perturbed by something
- Maximum moment of inertia is preferred!
- More on this idea of stability of a system in AERSP 304

5. Rigid Body Dynamics

- Duel Spin Satellite

5. Rigid Body Dynamics

- Gravity Gradient Torque
- Relies on the fact that the center of mass is not equal to the center of gravity - the difference between the two gives you your moment arm!

$$
\begin{aligned}
& M_{g g, 1}=\frac{3 \mu}{R^{3}} C_{21}^{O B} C_{31}^{O B}\left(I_{3}-I_{2}\right) \\
& M_{g g, 2}=\frac{3 \mu}{R^{3}} C_{11}^{O B} C_{31}^{O B}\left(I_{1}-I_{3}\right) \\
& M_{g g, 3}=\frac{3 \mu}{R^{3}} C_{11}^{O B} C_{21}^{O B}\left(I_{2}-I_{1}\right)
\end{aligned}
$$

5. Rigid Body Dynamics

- Attitude Sensing and Control
- Thrusters
- Gyro devices
- Gravity Gradient
- Magnetic
- Be fa miliar with all of them (both the mathematics and the concepts)!

6. Rocket Performance

- The Rocket Equation
- Assumption: Deep Space

$$
\begin{gathered}
\Delta v=v_{e x} \ln \left(\frac{m_{1}}{m_{2}}\right)=v_{e x} \ln \left(\frac{m_{1}}{m_{1}-m_{p}}\right) \\
m_{p}=m_{1}\left(1-e^{\frac{-\Delta v}{v_{e x}}}\right) \\
T=\left|v_{e x} \dot{m}\right| \\
I_{s p}=\frac{T}{\dot{w}}=\frac{v_{e x}}{g_{S L}}
\end{gathered}
$$

6. Rocket Performance

- Propulsion Technology
- Propellant: Fuel + Oxidizer
- Liquid Propellant
- Solid Propellant
- Know advantages and disadvantages!
- Electric Propulsion
- Microwave Propulsion
- Micropropulsion (currently being researched beyond the scope of this course but is interesting)
- Nuclear Propulsion
- Rocket staging
- Higher $\Delta \mathrm{v}$ but far more complicated!
- Understand the mathematics of how this works

7. Space Environment

- If you are interested in the space environment, the Department offers a course in SpacecraftEnvironment Interactions (AERSP 497l/ 597l)
- I took this course as an undergraduate student come talk to me if you're interested in it.
- Other courses are available with similarfocie.g. plasma interactions with spacecraft in the lonosphere, ra rified gas dynamics, etc.
- We very briefly touched on some high points in this course

7. Space Environment

- Thermal Environment in Space
heat flow: conduction, convection, radiation

7. Space Environment

- Wien's La w: The wavelength distribution of thermal radiation from a black body at a ny temperature has basic ally the same shape at a ny other temperature.

$$
\lambda^{*}(\mathrm{~cm})=\frac{0.2897}{T(K)}
$$

7. Space Environment

o Stefan-Boltzmann Law

$$
\begin{gathered}
\phi_{\text {out }}=\sigma \varepsilon T^{4} \equiv\left[\frac{\text { energy }}{\text { area } \cdot \text { time }}\right]=\text { output flux } \\
\sigma=5.672 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot K^{4}} \\
\phi_{\text {in }}=1.371 \times 10^{3} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}\left(\frac{R_{\oplus}}{R}\right)^{2} \\
P_{i}=\phi_{i} A_{\text {proj }}
\end{gathered}
$$

That's all, folks!

I have old homework and exams if you want pick them up.

You've been a great class. Thank you for a good semester and good luck on your final exams!

Don't forget our office hours if you have a ny last minute questions before the exam!

References

- [1] Bate, R.R., Mueller, D.D., a nd White, J.E., Fundamentals of Astrodynamic s, Dover Public ations, NY, 1971.
- [2] Vallado, D.A. with McClain, W.D., Fundamentals of Astrodynamics and Applic ations, 3 rd Ed, Mic roc Osm Press, Ha wthome, CA and Springer, New York City, 2007.
- [3] Wiesel, W.E., Spaceflight Dyna mic s, $3^{\text {rd }}$ Ed., Aphelion Press, Beavercreek, OH, 2010.
- [4] Battin, R.H., An Introduction to the Mathematic s a nd Methods of Astrodynamic s, Revised Ed., AIAA Educ ation Series, AIAA, New York, 1999.
- [5] Curtis, H.D., Orbital Mec hanics for Engineering Students, $2^{\text {nd }}$ Ed., Elsevier, New York City, NY, 2010.

