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Role of the Plasma Membrane in Endothelial

Cell Mechanosensation of Shear Stress

Peter J. Butler and Shu Chien

3.1 Introduction

Mechanotransduction, which is the process by which cells convert mechanical stimuli

to biochemical signaling cascades, is involved in the homeostasis of numerous tissues

(reviewed in [21] and [56]). The mechanotransduction of hemodynamic shear stress

by endothelial cells (ECs) has garnered special attention because of its role in reg-

ulating vascular health and disease. In particular, there is intense interest in identi-

fying the primary molecular mechanisms of the EC sensing of shear stress because its

(or their) discovery may lead to clinical interventions in atherosclerosis and other

diseases related to mechanobiology.

In this chapter, we address the hypothesis that the plasma membrane lipid

bilayer is one endothelial cell mechanosensor. Here we define ‘‘mechanosensor’’

as a cellular structure that responds to mechanical stress and initiates mechanotrans-

duction in response to shear stress without involving chemical second messengers.

Mechanotransduction, then, is the process by which cells convert this sensory stim-

ulus into changes in biochemical signaling. We define mechanobiology as the study

of the entire process of sensation, transduction, and attendant changes in cell phe-

notype. Because mechanical linkages from the cell surface to lateral, internal, and

basal parts of the cell redistribute forces imposed on the cell surface, many structures

could serve as mechanosensors. Furthermore, mechanotransduction can involve

direct force effects on molecules, diffusion- or convection-mediated transport of

molecular second messengers, and the active transport of signaling molecules by

molecular motors. Other chapters in this text will address other candidate mecha-

nosensors (e.g., focal adhesions and their integrins). With respect to the membrane,

in the context of these definitions, if shear stress induces a perturbation of the

membrane constituents, and this perturbation is necessary for mechanotransduction,

then the lipid bilayer is considered a mechanosensor. Similarly, if the shear stress

acting on the apical portion of the cell leads to the perturbation of the membrane on

the basal portion as a result of mechanical linkage, and this membrane perturbation

is necessary for subsequent downstream signaling, then we consider the basal mem-

brane also as a mechanosensor.
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We first outline the evidence of a role of the plasma membrane in shear stress

sensing. We then address the question of whether forces in the membrane are suf-

ficient to elicit changes in lipid dynamics, and we propose novel tools to address

whether stresses in the membrane are sufficient to induce lipid-mediated protein

signaling. We conclude with a proposal for a unified theory on the role of the plasma

membrane in shear sensing. This theory is offered to stimulate discussions of mem-

brane mechanosensing and to foster new research directions.

3.2 Overview of Mechanotransduction

3.2.1 Endothelial Cell Mechanotransduction and Vascular Physiology

The endothelium regulates vascular health by forming a regulated semi-permeable

barrier to blood constituents, secreting vasoactive compounds that control vascular

caliber, and modulating EC adhesiveness to white blood cells. EC dysfunction can

lead to diseases such as atherosclerosis, stroke, and hypertension. The endothe-

lium is subject to hemodynamic forces (e.g., shear stress, s) that vary temporally,

spatially, and in magnitude, depending on the location in the vasculature, the heart

rate, and the metabolic demand of tissues (Figure 3.1). Endothelial responses to

temporal gradients [5, 11, 12, 33] and spatial gradients [22, 25, 87, 114] in shear stress

play a significant role in determining whether ECs exhibit an atherogenic or athe-

roprotective phenotype [17, 55, 63, 67, 90, 118]. Atherogenic ECs have a higher

permeability to low density lipoproteins, greater adhesivity to circulating mono-

cytes, and faster turnover rates. There is a large body of evidence that low and

oscillatory shear stress is an atherogenic stimulus, while high and unidirectional

shear stress is atheroprotective (e.g., [57]). In addition, EC mechanotransduction

plays a role in stent-induced restenosis [71, 113, 120] as well as the development and

successful deployment of artificial vascular grafts [89]. The temporal and spatial

gradients in shear stress also are important in the coordination of blood flow in

the microvasculature [12, 62, 64, 65, 69, 96, 103] and hence in the maintenance of

capillary blood pressure and the delivery of oxygen, nutrients, and immunity-related

leukocytes to tissues.

3.2.2 Mechanisms of Mechanotransduction

In order to understand the mechanism of the initiation of shear modulation of EC

function, there have been many studies searching for primary shear sensors (Figures

3.1 and 3.2). Investigations on the shear modulation of protein products [18], cellular

and cytoskeletal orientation [35, 41, 42], production of vasoactive autacoids [31, 47,

66], intracellular calcium concentration [2, 40], gene expression [9, 16, 23, 81, 105],

and glycocalyx composition [3] have led to the identification of many molecules

involved in mechanotransduction including integrins [57, 60, 76, 86], G-proteins

[32, 49, 50, 57, 68], K+ channels [58, 93, 93, 94], stretch-activated Ca2+ channels
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[88, 107], surface proteoglycans [6, 83, 106] and cell–cell junctional proteins [83]

(reviewed in [21]). Determining whether these molecules are mechanosensors will

require sophisticated experimental methods to detect their direct perturbation by

shear stress and their role in the conversion of force to downstream biomechanical

signaling.

Experimental methods to elucidate EC mechanosensitivity have included engi-

neering analysis, mechanical testing, molecular biological technology, and fluores-

cence imaging. For example, approaches to elucidate cell mechanics include

characterizing the mechanical properties of the EC membrane by micropipette as-

piration [100] and atomic force microscopy (AFM) [15, 99], investigating the effects

of shear on EC–membrane lipid lateral diffusion [10] and free volume [52], and

analyzing the shear-induced deformation of intermediate filaments [54]. Extensive

molecular biological investigations have elucidated the signaling pathways that reg-

ulate gene transcription in response to shear stress (reviewed in [17]) and have un-

covered the genetic endpoints in EC shear sensitivity [16, 36, 81]. Such studies have

provided fundamental insights into the force transduction mechanisms and suggest

that ECs use multiple cellular structures to integrate the effects of fluid forces into

a coordinated cellular response.

Figure 3.1. Hemodynamics, endothelial cells, and candidate shear sensors. (A) Blood flow
induces fluid shear stress on the surfaces of endothelial cells, which distribute the force to
multiple structures thought to be involved in mechanotransduction. (B) Silver nitrate staining
of endothelial cell borders in isolated arteriole.
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3.3 The Membrane as a Mechanosensor

3.3.1 Mechanisms of Bilayer Modulation of Protein Function

Circumstantial evidence supports the plausibility that the lipid bilayer is a primary

mechanosensor. First, the membrane is exposed to effects of shear stress directly

either by its contact with fluid flow, through its interaction with the surface glyco-

calyx, or by its association with mechanosensitive domains such as focal adhesions

(see Figure 3.2). Second, the membrane is a repository for many mechanosensitive

proteins [10, 49, 61, 92]. Third, perturbation of EC membrane lipids by shear stress

may initiate signaling cascades in ECs leading to altered gene expression [11, 49].

However, the mechanisms of shear perturbation of the membrane or the subsequent

molecular mechanisms that link such perturbations with signal transduction have yet

to be discovered.

Numerous reviews have been written on the role of the membrane in modulating

membrane-associated protein function. For example, Lee [74] discusses the many

Figure 3.2. Molecular organization in a representative endothelial cell: Membrane, integral
membrane proteins, cell junctions, extracellular matrix molecules, and cytoskeleton are rep-
resented. Arrows denote velocity near cell membrane. Shear stress (viscosity times velocity
gradient) is attenuated in the glycocalyx (endothelial surface layer) compared to areas de-
nuded of the glycocalyx. Stresses may also be transferred to focal adhesions or near focal
adhesions where they are amplified.
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biophysical and biomolecular mechanisms by which proteins are modulated by

their surrounding lipids. These mechanisms involve the interactions of lipid head-

groups with proteins; the effects of differences in hydrophobic thicknesses of

proteins and bilayers; the effects of lipid structure on protein aggregation and

helix–helix interactions; the role of membrane phases and membrane microviscos-

ity on protein–protein association; the effects on proteins of lipid free volume,

bilayer curvature, interfacial curvature, and elastic strain; and the effects on pro-

tein inclusions of lateral pressure profile and tension. While the exact mechanism

of shear-stress–induced modulation of the interaction of lipids with integral mem-

brane proteins remains to be elucidated, in this chapter we evaluate the two hy-

potheses of shear modulation of EC membranes for which there exist experimental

and theoretical support: shear-induced changes in lipid fluidity and hydrophobic

mismatch.

3.3.2 Overview of Membrane Fluidity

Singer and Nicholson [109] first proposed a working model of the cell membrane that

allowed for in-plane movement of its components. This model hypothesized that the

cell membrane is a thin layer of lipid molecules with protein molecules interspersed

throughout. Further studies have revealed that the distribution of lipid molecules is

heterogeneous and that some integral membrane protein molecules, being bound to

an underlying cytoskeleton, are only intermittently free to move [59]. The term

‘‘lipid fluidity’’ has been used to characterize all aspects of lipid mobility, including

in-plane and rotational diffusion, and to suggest a mechanism for lipid modulation of

protein activity. However, more detailed investigations suggest that lipids modulate

protein function through multiple mechanisms [4, 14, 20, 84, 97, 104, 108].

The membrane fluidity of animal cells is determined primarily by the amounts

and types of phospholipids, the membrane cholesterol content, and the interaction

of lipids with membrane-bound proteins (and the interactions of these proteins

with the cytoskeleton). A phospholipid is composed of a hydrophilic head region

that is in contact with the extracellular or intracellular space, and two hydrophobic

fatty acid chains, which are located in the interior of the membrane and interact

with other phospholipid tails. If the tails of the phospholipids are saturated with

hydrogen (i.e., with no carbon–carbon double bonds), then they are relatively

straight and can pack closely together, leading to a high resistance to lateral move-

ment of membrane constituents and hence a low membrane fluidity. These areas of

the membranes tend to be thicker than the more fluid membrane portions. Simi-

larly, increasing the degree of unsaturation, by increasing the number of carbon–

carbon double bonds, puts kinks in the otherwise straight chains and makes it more

difficult for these types of phospholipids to pack in an orderly fashion. In this case,

the membrane is more fluid and thinner. Similarly, cholesterol binds, via a hydro-

gen bond, to the carboxyl group on the base of the fatty acid and thus intercalates

itself into the hydrophilic portion of the membrane [110], thus restricting the

movement of lipids and resulting in membrane stiffening.
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Proteins can also affect membrane fluidity via their interactions with their sur-

rounding lipids [85]. Perturbation of a protein in the lipid medium disturbs the

orderly packing of the lipids in an annular region around the protein. Generally,

the hydrophilic portion of the lipids (e.g., headgroups) is attracted to the hydrophilic

part of the protein. Since the hydrophobic core of the protein may not match the

hydrophobic thickness of the lipid bilayer, many proteins protrude out of the mem-

brane, and the lipid environment immediately surrounding the protein is fluidized.

Maintaining a separation between fatty acid chains of lipids from opposing leaflets is

a high energy process. To minimize the energy required to maintain the membrane

integrity around the proteins, often only lipids with longer fatty acid tails will sur-

round the protruding proteins (see Figure 3.3). In this way, proteins determine what

types of lipids will surround them. Furthermore, with a high concentration of pro-

teins, these annular regions may overlap, and therefore there is a potential for

protein–protein interactions in the annular lipid regions. For proteins that are bound

to the cytoskeleton, their presence may lead to an overall stiffening of the membrane.

Each of these properties, that is, fatty acid chain saturation, cholesterol content,

and protein content (and protein interaction with the cytoskeleton), are known to be

tightly regulated by the cell. When these systems are chronically perturbed, cells can

Tension or 
curvature change

Membrane thinning

Protein compression Protein tilting Protein twisting

Hydrophobic mismatch

Water
Hydrophilic 
Hydrophobic 

Figure 3.3. Illustration of tension- or curvature-induced changes in hydrophobic thickness of
the bilayer: Hydrophobic region of membrane may match hydrophobic thickness of integral
membrane proteins. This matching may be perturbed by fluid shear stress leading to mem-
brane tension, which may thin the membrane by direct tension effects or through changes in
membrane curvature, leading to alteration of protein conformation by protein compression,
tilting, or twisting.
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potentially adjust these properties to maintain an ‘‘optimal’’ fluidity. This regulation

is known as homeoviscous adaptation [77]. While the notion of a fluidity set-point is

still controversial, the homeoviscous adaptation theory has been shown to apply in

poikilotherms’ adaptation to chronic temperature changes and to cells of hibernating

animals. Both poikilotherms and homeotherms adapt to the decreases in cell fluidity

induced by cold by synthesizing a greater proportion of unsaturated fatty acids,

which, when incorporated into the cells, stabilize membrane fluidity as the temper-

ature falls. If shear stress alters membrane fluidity in a chronic manner, than the cells

potentially could adjust their membrane constituents to adapt to this chronic stress.

Such adaptation (or lack of) could be a factor, as yet undiscovered, that determines

protection from (or propensity for) atherosclerosis.

3.3.3 How Does Lipid Fluidity Affect Proteins?

By restricting (or allowing) movement in the plane of the membrane, changes in

lipid fluidity can restrict (or enhance) protein lateral mobility and thus might affect

diffusion-dependent protein functions [4]. As an example of diffusion-mediated pro-

tein function, G-protein hydrolysis, a process necessary for many agonist-induced

changes in the cell, depends on the diffusion of the G-protein from the receptor to

a downstream effector. Alterations in this diffusion could potentially affect the

equilibrium between receptor/G-protein complexes and effector/G-protein com-

plexes [82]. Since, in equilibrium, fluidity is thought to affect the forward and reverse

reaction rates equally [74], it is likely that fluidity changes would affect protein–

protein interactions only under nonequilibrium conditions, such as during rapid

changes in membrane tension [11].

Finally, lipid fluidity may affect the accessibility of proteins to ligands [104].

According to this concept, tighter packing of lipids causes integral membrane pro-

teins to be pushed out of the membrane and thus make their active sites more

available to ligand binding. Increased protrusion of integral proteins out of the

membrane could also increase their hydrophobic mismatch and thus alter protein

free energy (see next section).

3.3.4 Hydrophobic Mismatch

Because of the energetic cost of exposing hydrophobic amino acid residues to water,

it is expected that the hydrophobic region of lipids will match the hydrophobic core

of the proteins embedded in the bilayer (Figures 3.2 and 3.3). Equivalently, if the

hydrophobic thickness of the membrane changes, then either the lipids will rear-

range or the protein will reach a new conformation by tilting, twisting, stretching, or

compressing in order to reduce the hydrophobic mismatch (Figure 3.3) [53]. In either

case, changes in the membrane thickness will lead to changes in protein conforma-

tion. Hydrophbic mismatch can also explain the dimerization of proteins. For exam-

ple, alterations in lipid fluidity can modulate the protein’s local energy environment
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by either changing the phase of the lipid immediately surrounding the protein to

affect the protein conformation or ameliorating the hydrophobic mismatch. The

former effect has been hypothesized to cause the anesthetic effects of haloalthane

on nerve function; haloalthane fluidizes the entire membrane and negates the phase

change from the protein annular region to the remainder of the lipid bilayer, thus

preventing the opening of sodium channels in neurons [115]. If protein dimerization

leads to a reduction in protein free energy caused by hydrophobic mismatch, then

changes in membrane thickness will lead to dimerization. Similarly, changes in lipid

fluidity can affect the hydrophobic mismatch between the lipids and the protein and

alter its free energy state [84]. Such changes in free energy may be sufficient to cause

a conformational change in a receptor protein, for example, to initiate downstream

signaling even in the absence of a ligand.

3.3.5 Role of Membrane Microdomains

Recent studies suggest that mechanically induced stresses are transduced to co-

ordinated biochemical pathways in ECs via the perturbation of the plasma mem-

brane in specialized membrane microdomains, for example, lipid rafts, caveoli [97],

focal adhesions [76], and cell junctions [34]. For example, shear-sensitive molecules

(G-proteins [92], MAPKs [61], eNOS [37]), reside in ; 100-nm–diameter, choles-

terol rich, liquid-ordered–phase membrane microdomains termed caveoli and lipid

rafts [26, 97]. Gi-proteins (present in lipid rafts [92]) play a role in shear-induced

nitric oxide production [93, 111] and in shear-induced MAPK activity [61] in bovine

aortic endothelial cells. Focal adhesions and cell–cell junctions may be mechanosen-

sitive membrane domains that may have unique lipid compositions [44, 48, 116].

Recently, Schnitzer [19] has shown that shear stress activates MAPK in caveoli

via lipid-mediated mechanisms involving ceramide and sphingomylinase, which may

be activated by G-proteins.

Key unanswered questions, however, remain: Is the local stress induced by fluid

shear sufficient to perturb molecules in these domains to a sufficient degree to

initiate mechanotransduction events, or are the effects of shear stress the results

of activation elsewhere and communicated to the membrane via second messengers?

Addressing these questions will require increased use of multiscale mechanical mod-

els of cells along with optical tools to detect mechanically induced molecular dynam-

ics changes at the submicrometer length scale.

3.3.6 Evidence for Lipid Domains in Cells

There have been excellent studies using electron microscopy to detect caveoli in ECs

[97]. However, lipid rafts have been more elusive because they do not have a char-

acteristic stable shape. Thus, indirect means to detect rafts include the observation

that certain parts of the membrane float to the top of a density gradient (hence the

term ‘‘raft’’). Another strategy is to use chain length–sensitive lipoid dyes to take

advantage of the fact that lipid rafts and caveoli, because of their increased lipid

68 Role of the Plasma Membrane in Endothelial Cell



order, are slightly thicker than bulk plasma membranes. For this chapter, we present

the implementation of this strategy in which lipid microdomains are detected using

dialkylcarbocyanine, DiI C18, which has the propensity to segregate into the thicker

membrane microdomains. First, two-phase vesicles were made from mixtures of

imyristoylphosphatidylcholine (DMPC; liquid at room temperature; phase transi-

tion temperature 23.5�C) and dipalmitoylphosphatidylcholine (DPPC; gel at room

temperature; phase transition temperature 41�C) [70, 80] and DiI C18. Figure 3.4

illustrates how the dye partitiones into distinct areas presumed to be areas of co-

alesced gel-phase lipids. Similar structures were identified in bovine aortic endothe-

lial cells (BAECs) stained with DiI C18. Similarly, a BAEC culture was stained with

both sulfonated (SP-) DiIC18 and Alexa-fluor-labeled Cholera-toxin-B (CT-B)

(Figure 3.5). CT-B labels GM-1 gangliosides, which are thought to be raft markers

[7]. Cells were cultured on borosilicate coverslips and then incubated with a CT-B

solution of 25 lg/ml in DPBS on ice for 20 min. The cells were warmed to 37�C and

then stained with 10 lM SP-DiIC18 using the above procedure. The resulting images

were aligned utilizing Autoquant’s Autodeblur� software and examined for coloc-

alization of the stains using the NIH ImageJ software. Figure 3.5 (Plate 4) illustrates

the colocalization of DiI C18 and the raft marker. Thus, it is likely that DiI C18,

because of its longer acyl chain length, segregates into lipid domains of comparable

thicknesses. Cholesterol is thought to be concentrated in these domains and contrib-

utes to its enhanced thickness. We caution that cross-linking of GM-1 with CT-B

may induce raft formation. Thus, additional tools are needed to detect rafts in their

native state see (see section on fluorescence lifetime later in this chapter).

3.3.7 The Glycocalyx May Modulate the Effects of Shear Stress on Membranes

Recent studies support a possible role of the glycocalyx in modulating mechano-

transduction events. Weinbaum et al. [119] and Secomb [102] have shown that the

glycocalyx attenuates shear stress near the plasma membrane (see Figure 3.2). Such

results suggest that the membrane cannot be a primary sensor of shear stress.

Figure 3.4. Detecting gel-phase lipid microdomains. In order to test whether DiI C18 segre-
gates into identifiable gel-phase microdomains, 2-phase vesicles were made from DMPC,
DPPC, and DiI C18. At room temperature, dye partitioned into distinct areas presumed to
be areas of coalesced gel-phase lipids. Similar structures were identified in BAECs stained
with DiI C18. Gel-phase domain formation in GUVs (A, B) and BAECs (C, D). Bars: A¼ 10
lm, B¼ 1 lm, C¼ 10 lm, D¼ 1 lm.
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Consistent with a role of the glycocalyx in mechanotransduction, Mochizuki et al.

[83] showed that degradation of the glycocalyx through hyaluronic acid digestion

reduces shear-induced nitric oxide production in isolated arterioles. Similarly, Tar-

bell and colleagues [30] showed that digestion of heparin sulfate proteoglycans

abolishes shear-induced nitric oxide production in cultured ECs. Taken together,

these studies support the role of the glycocalyx as a primary mechanosensor of shear

stress. It is also possible that the glycocalyx may be necessary for the transmission of

fluid forces to the plasma membrane. Consistent with this idea, the glycocalyx has

been shown to be anchored to the cell membrane via focal attachment points [112]

and through glycoclipid linkages [101]. In addition, the integrated drag on the cell is

resisted by focal adhesions near which membrane strain may be greatly amplified

[28]. Therefore, it is likely that the glycocalyx can play a role in the transmission of

force to the lipid bilayer (i) directly, via attachments to membrane lipids; (ii) in-

directly, via integral membrane proteins; and (iii) by modulation of the flow near the

lipid bilayer surface.

Figure 3.5. Colocalization of long chain lipoid dye and lipid raft markers. BAEC culture was
stained with both SP-DiIC18 and CT-B. Cells were cultured on borosilicate coverslips, and
then incubated with a CT-B solution of 25 lg/ml in DPBS on ice for 20 mins. The cells were
warmed to 37�C and then stained with 10 lM SP-DiIC18. The resulting images were aligned
utilizing Autoquant’s Autodeblur� software and examined for colocalization of the stains
using NIH’s ImageJ software. (A) CT-B staining from channel 1. (B) Sp-DiI C18 staining
pattern. (C) DiIC18 and CT-B colocalization of indicated by white pixels.
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3.3.8 Evidence for Shear Stress Perturbation of Membrane Lipids

Shear stress induces a time- and position-dependent change in lipid lateral diffusion

[10] (see Figure 3.6), thus supporting the idea that the cell membrane’s proximity to

the blood flow makes it a candidate shear-sensitive system. By adapting a confocal

laser scanning microscope for measurements of fluorescence recovery after photo-

bleaching (FRAP), Butler et al. [10] made quantitative, two-point, subcellular

measurements of membrane fluidity (as quantified by the lipid lateral diffusion co-

efficient, D) on cells while being subjected to shear stress. Their results have shown

that (i) shear stress induces a rapid, spatially heterogeneous, and time-dependent

increase in D of a fluorescent lipid probe in the BAEC membrane; (ii) the location,

magnitude, and persistence of these shear-induced increases in D depend on the

shear magnitude; and (iii) shear stress elicits a secondary (7-min) increase in D. They

further demonstrated that the lipid lateral diffusion coefficient (D) of the membrane

is sensitive to the temporal gradient in shear stress [11]. A step-s of 10 dynes/cm2

elicited a rapid (5-sec) increase of D in the portion of the cell upstream of the

nucleus, and a concomitant decrease in the downstream portion (Figure 3.6(A)).

A ramp-s with a rate of 10 dynes/cm2/min elicited a rapid (5-sec) decrease of D in

Figure 3.6. Shear stress induces changes in lipid lateral diffusion and activation of MAPK
proteins. (A) 10 dynes/cm2 of shear stress elicit increases and decreases in lipid lateral diffu-
sion on the upstream and downstream sides, respectively, of the EC membrane (D* ¼ percent
change of lipid diffusion from pre-shear values). (B) Shear induced changes in D* are absent
when shear stress is ramped to maximal values. (C) Comparable shear stresses lead to phos-
phorylation of extracellular-signal regulated kinase (ERK). (D) c-jun N-terminal kinase
(JNK). (Adapted from [11] with permission.)
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both the upstream and downstream portions (Figure 3.6(B)). Thus, it can be con-

cluded that the lipid bilayer can sense the temporal features of the applied s with

spatial discrimination.

Membrane perturbation may activate signaling cascades responsible for changes

in gene expression. Butler et al. [11] have shown that a step-shear stress, which

increased D, increased the activation of extracellular-signal–regulated kinase

(ERK) and c-Jun N-terminal kinase (JNK) (see Figures 3.6(C,D)), which are im-

portant signaling molecules for shear stress–related gene expression. Ramp-shear,

which failed to increases D, did not result in increases in ERK or JNK. Furthermore,

the membrane fluidizer, benzyl alcohol, increased ERK and JNK kinase activity. In

contrast, cholesterol, which decreased D, decreased the activities of these MAP

kinases, suggesting that stresses in the membrane, as revealed by changes in D, lead

to downstream signals that are responsible for altered gene expressions. These

results support the hypothesis that the cell membrane plays a role in transducing

the magnitude and rate-of-change of shear stress into gene expressions, a feature

important in areas of complex flow patterns and abrupt changes in shear stress in the

microvasculature during exercise and reperfusion after ischemia.

3.3.9 Other Mechanosensitive EC Functions That Are Modulated by

Lipid Membrane Fluidity

Recently, Gojova and Barakat [43] showed that vascular endothelial wound closure

under shear stress was modulated by membrane fluidity and dependent on flow-

sensitive ion channels. They showed that that reducing EC membrane fluidity in

cells near an edge of a wounded monolayer significantly slowed down both cell

spreading and migration under flow. Interestingly, when they blocked flow-sensitive

K+ and Cl� channels, cell spreading was reduced but cell migration was unaffected.

Although the relationship between membrane fluidity and ion channel activation in

response to flow was not assessed in that study, these findings suggest that membrane

fluidity modulates shear-sensitive pathways and the consequent cellular functions

such as migration and spreading.

Focal adhesions and integrins are known to be involved in mechanotransduc-

tion. Recently, Gaus et al. [38] made measurements of membrane order using two-

photon microscopy of the fluorescent membrane probe Laurdan to show that focal

adhesions are more ordered than caveolae or domains that stain with cholera toxin

subunit B (Ct-B) (presumably lipid rafts) [121]. When cells were detached from the

substrate, a rapid, caveolin-independent decrease in membrane order occurred.

These results show that phospholipids and cholesterol play important roles in focal

adhesion assembly and may have a strong influence on signaling at these sites.

In a related study, Gopalakrishna et al. [44] showed that cholesterol modulates

a5b1 integrin functions, suggesting that the lateral mobility of integrin molecules in

the plasma membrane, which is influenced by cholesterol content (and membrane

fluidity), may regulate the clustering of a5b1 integrin molecules in focal adhesions

and, subsequently, their adhesion to the extracellular matrix protein fibronectin and
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intracellular protein talin. In that study, the activation of MAPK pathways by the

association of fibronectin with a5b1 integrin was suppressed by cholesterol. The role

of membrane fluidity in regulating integrin mobility is supported by models of integ-

rin diffusion laterally in the membrane toward focal adhesions [8]. These results also

suggest that focal adhesions, like caveoli and rafts, can be thought of as membrane

lipid microdomains.

3.3.10 Quantification of Shear-Induced Membrane Stresses

Ferko et al. [29] recently introduced new integrated methods in fluorescence imaging

and image processing for the development of solid models with cell-specific top-

ographies and subcellular organelles (Figure 3.7; Plate 5). The goal of this research

was to use these methodologies along with quantitative total internal reflection

fluorescence microscopy (qTIRFM) to create a cell-specific, multicomponent, three-

dimensional solid elastic continuum model of an EC in a confluent monolayer with

experimentally determined FAs [28]. Finite element analysis was used to compute

stress transmission throughout the EC due to fluid flow applied at the apical surface.

This type of cell-specific modeling based on experimentally determined topogra-

phies and boundary conditions may help identify potential sites of force-induced

potentiation and directional-biasing of cell signaling.

Figure 3.7. Representative subcellular shear stress distribution. A nominal shear stress of
10 dynes/cm2 was simulated over the solid cell monolayer model in the positive y-direction.
Model was developed from three-dimensional cellular imaging and quantitative total internal
reflection fluorescence imaging of calcein-stained endothelial cells. Finite element analyses of
fluid (extracellular) and solid (intracellular) stress distributions were analyzed using compu-
tational fluid dynamics and linear elasticity theory. Stress distributions show stress peaks at the
apical region over the nucleus while stress is minimum in the valleys between cells. Simulated
cell represents a single cell in a monolayer. Simulated velocity field is shown using streamlines.
Color plot of shear stress in dynes/cm2; streamline color corresponds to fluid velocity (cm/s).
Axes in m. (Adapted from [27] with permission.)
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The main contributions of this study were to provide the first quantitative pre-

dictions of stress distributions in focally adhered ECs resulting from apically applied

fluid flows. These results arose from finite element analysis of a cell-specific model in

which surface topography and FA location and area were experimentally determined.

The model predicted that shear-induced stresses were generally small but significantly

amplified and focused near FAs and the high-modulus nucleus. For example, the

inclusion of FAs as attachment locations in a homogeneous linear elastic continuum

model resulted in heterogeneous internal stresses, strains, and displacements (see

Figure 3.8; Plate 6). Stresses near FAs were nearly 40-fold larger than surface shear

stresses, thus supporting the widely held contention that FAs are a means of force

amplification of shear stress. The locations and directions of upstream tensile and

downstream compressive stresses computed in the vicinity of individual FAs were

consistent with the observation of FA growth in the downstream direction of flow

and FA retraction in the upstream side, thus providing quantitative information to

elucidate the mechanisms of mechanotaxis of ECs [24, 75, 122].

3.3.11 Quantitative Effects of Membrane Tension on Lipid Dynamics and

Protein Inclusions

The work of Ferko et al. [28] and Butler et al. [10] support the concept that stresses in

the membrane rise to a sufficient degree to induce molecular perturbation. However,

the mechanism of shear-induced molecular perturbation of membrane lipids

remains unknown. In a theoretical study, Gov [46] provided evidence that changes

in the static or dynamic curvatures of the membrane may lead to increased lipid

diffusion. To summarize that work, it is postulated that when a flat membrane is

curved, the thickness increases, leading to an increased resistance to diffusion. Using

molecular diffusion models first proposed by Saffman and Dulbruck [98] in which the

diffusion of a cylinder in the plane of the membrane is inversely proportional to the

Figure 3.8. Effects of focal adhesion on shear-induced stresses. Von Mises stress distributions
were evaluated at z ¼ 0.1 lm above the coverslip for (A) model computed without focal
adhesions and (B) model solved with focal adhesions. (Adapted from [28] with permission.)
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membrane thickness, membrane thickening would lead to decreases in membrane

fluidity and diffusion coefficient. Conversely, when a curved membrane is flattened by

a surface tension generated by shear flow, the membrane thins and diffusion

increases. Gov’s [46] analysis of the effects of shear stress on lipid diffusion fit the

data from Butler et al. [10] very well. Interestingly, the changes in the membrane

thickness from this analysis can be used to estimate the changes in the hydrophobic

matching conditions in a candidate shear-sensitive protein embedded in the lipid

bilayer. For a shear stress of 20 dynes/cm2, Equations 8 and 7 from Gov [46] predict

that diffusion will increase by about 40% over pre-shear values, consistent with Butler

et al. [10]. Using Equation 4 from Gov, and assuming that the membrane goes from

curved to flat during shear application, we can predict that shear stress flattens mem-

brane fluctuations from an initial mean squared curvature of 0.0058 nm�2. This

change in curvature would decrease the membrane thickness from 5.0 nm to 3.9

nm (see Equation 4 in Gov [46]), corresponding to a 22% strain in the direction of

the bilayer normal (strain parallel to the membrane will depend on the Poisson’s ratio

of the membrane). This is an appreciable strain and is the same order of magnitude

needed to sufficiently alter the free energy of ion channel inclusions in bilayers [1, 45,

91]. Membrane strain in the vicinity of focal adhesions may be even more pro-

nounced, and this would lower the shear threshold for protein activation [39].

3.4 Tools for Measurement of Mechanically Induced Lipid Perturbation

3.4.1 Time-Correlated, Single Photon Counting, and Multimodal Microscopy

Our main hypothesis is that the perturbation of cellular structures by force is accom-

panied by changes in molecular dynamics. In order to address these fundamental

issues in mechanosensing and transduction, Gullapalli, Tabouillot, et al. [51] have

developed a hybrid multimodal microscopy-time–correlated single photon counting

(TCSPC) spectroscopy system to assess time- and position-dependent, mechanically

induced changes in the dynamics of molecules in live cells as determined from

fluorescence lifetimes and autocorrelation analysis (fluorescence correlation spec-

troscopy) (see Figures 3.9 and 3.10). Colocalization of cell structures and mechan-

ically induced changes in molecular dynamics can be analyzed in post-processing by

comparing TCSPC data with three-dimensional models generated from total inter-

nal reflection fluorescence (TIRF), differential interference contrast (DIC), epifluor-

escence, and deconvolution [28].

3.4.2 Fluorescence Correlation Spectroscopy

Fluorescence correlation spectroscopy is ideally suited for cellular research because

diffusion and chemical kinetics can be measured in very small volumes (; 1 fl). A

pinhole placed in an image plane of the emission optical pathway defines the con-

focal observation volume into and out of which fluorescently tagged molecules move

(Figure 3.9). The resulting fluorescence fluctuations picked up by the photodetector
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are translated into current intensity fluctuations. The time autocorrelation curve of

this signal can be fit to various formulas to extract physical values for transport

phenomena (two- or three-dimensional diffusion, anomalous diffusion, translation)

or chemical kinetics [27, 78]. For example, the fluorescence autocorrelation funtion

G(sw) can be fit for (two-dimensional) diffusion by

G sð Þ ¼ 1

N
:

1

1þ sw=sD

� �
0
@

1
A

where N is the average number of particles, sw is the lag time of the autocorrelation

function, and sD is the characteristic diffusion time, which is related to the diffusion

coefficient, D, by r2 ¼ 4DsD:

3.4.3 FCS Measurements of DMPC Giant Unilamellar Vesicles and

Endothelial Cell Membranes

In a recent study outlining the use of TCSPC for mechanobiology studies of mem-

branes, Gullapalli et al. [51] performed FCS measurements on DMPC vesicles and EC

Figure 3.9. Confocal volume for fluorescence correlation spectroscopy. The radial dimension r

of the confocal volume is close to the diffraction limit of the objective and is determined by
keeping the (r/z) parameter constant (<10) in Equation (3.6) when fitting the autocorrelation
curve from R6G molecules in water. The radius thus obtained from experiment is 326 6 10 nm.
Fluorescent molecules are excited by the entire laser beam and fluorescence emission is only
collected in the confocal volume. When particles move into and out of the confocal volume in
the x, y and z directions, three-dimensional diffusion is considered. When particles only move in
the x-y plane, two-dimensional diffusion is considered. (Adapted from [51] with permission)

76 Role of the Plasma Membrane in Endothelial Cell



membranes stained with DiI-C18. Fluorescence of DiI C18 was excited with 520-nm

light from the CW laser or 532-nm light from the pulsed solid-state laser. Fluorescent

light with wavelengths of 545 nm and longer was collected for analysis. The temper-

ature of the media was maintained at 37�C for cells and 26�C for DMPC (phase-

transition temperature for DMPC ¼ 24�C). The results were fit using the equation

for two-dimensional diffusion. The Results suggest that DiI diffusion in homogenous

Figure 3.10. Optical setup for TCSPC-multimodal microscopy. The Kr/Ar-ion, diode, or
pulsed Nd:YAG laser beam is transmitted via fiber coupling to the TIRF or confocal port.
For confocal illumination, upon exiting the fiber, the beam is collimated with lens L1, ex-
panded by L2 and L3, steered by the mirrors M1 and M2, reflected off the dichroic mirror
(DM1), and enters the right-side port of the microscope (note that the tube lens for the side
port has been removed). After excitation of the sample, the fluorescence emission signal is
collimated by the objective and exits the side port, passes through the dichroic mirror, and is
focused – using lens L4 – onto the optical fiber, which is connected to the photomultiplier tube
(PMT). A polarizing beam splitter (PBS) can be introduced before the fiber to separate light
with polarization that is parallel or perpendicular to that of the excitation light. The PMTs
convert single photons to electrical pulses, which are routed to the TCSPC board. Laser light
from the TIRF system shares the back port of the microscope with the epifluorescence tube
(Epi). Lenses L5 and L6 collimate the epifluorescence and TIRF light, respectively. The TIRF
illumination is focused at the objective back aperture by lens L7. When the sliding mirror,
Mslide1, is removed from the light path, the right-side port is closed and the emission signal
can be collected by the camera via the tube lens (TL). In addition, the optical trap can be
inserted above the fluorescence cube turret with an infrared dichroic mirror (DMslide)
mounted on a custom-built slider (not shown). (Adapted from [51] with permission.)
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model membranes is uniform, but diffusion of the same dye in cell membranes is more

restricted (lower diffusion coefficient) and heterogeneous. These data support the

hypothesis that these lipoid dyes segregate into membrane micodomains and that

time-resolved fluorescence spectroscopy can be used to detect this segregation.

3.4.4 Fluorescence Lifetime

Time-resolved fluorescence lifetime spectroscopy enables the analysis of subtle

changes in the photophysics of fluorescent molecules [72]. When a fluorescent mol-

ecule is excited to a higher energy state using a picosecond pulse of laser light, it

remains in the excited state for a finite time before it decays to the ground level

energy state. Using a high-frequency pulsed laser, histograms of photon emission

times relative to excitation times can be generated and fit with a negative exponen-

tial (or multiple exponentials) with a characteristic decay time (or lifetime), sF

(different than the characteristic diffusion time, sD, of FCS). The Fluorescence

lifetime depends on local molecular microenvironmental factors, including ionic

strength, hydration, oxygen concentration, binding to macromolecules, and the

proximity to other molecules that can deplete the excited state by resonance energy

transfer [72]. The fluorescence lifetime and quantum yield are related to the intrinsic

photophysical characteristics of a fluorescent molecule such as radiative and non-

radiative decay mechanisms. The fluorescence quantum yield, Q, is the ratio of the

number of photons emitted to the number of photons absorbed, according to

Q ¼ kr

kr þ knr

where kr and knr are the radiative and nonradiative decay rates of the molecule,

respectively. Fluorescence lifetime is given by

sF ¼
1

kr þ knr

The value for knr depends on the mode of the nonradiative decay, such as collisional

quenching, hydration, and vibrational relaxation. Thus, any alteration of knr also

leads to a detectable change in the value of the fluorescence lifetime.

The value for fluorescence lifetime is obtained by an iterative reconvolution of

an instrument response function (IRF), with the fluorescence intensity using an

assumed decay law, which can be approximated by a sum of exponentials [72]:

I tð Þ ¼ +iai exp �t=sF ið Þ

where ai is the fraction of molecules with lifetime sFi, normalized to unity. Fluores-

cence lifetimes are independent of fluorescence probe concentrations and can provide

information not obtainable from intensity variations alone. When polarized light is

used to excite a molecule whose excitation dipole is oriented parallel to the polariza-

tion of the pulse, it is possible to separate the parallel and perpendicular components

of the emitted fluorescence signal and to extract rotational diffusion constants [72].
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As an example of how fluorescence lifetime can probe membrane microdo-

mains, BAECs were labeled with either DiIC12 or DiIC18 and fluorescence lifetime

(FL) measurements were taken on the cell membrane (Figure 3.11). Histograms

suggest that the FL of DiIC18 is twofold greater than the FL of DiIC12, suggesting

that nonradiative energy transfer (dictated by knr) is greater for the short-chain–

length dyes. Since the fluorophore of these two probes is identical, these differences

in sF indicate that DiIC18 is probing a more restrictive environment than DiIC12. The

absolute value of the DiIC18 sF is consistent with its probing of gel-phase lipid

domains (Figure 3.12) [95]. Further evidence of the association of DiIC18 with mem-

brane domains is shown in Figure 3.5 (Plate 5), where DiI C18 staining was found to

colocalize with FITC- labeled cholera toxin, a raft marker.

3.5 A Proposed Model of Lipid-Mediated Mechanotransduction

of Shear Stress

We conclude this chapter by proposing a model for membrane mechanosensing and

mechanotransduction. Elements of this model are supported by experimental obser-

vations and theoretical predictions. We propose that the membrane is naturally

curved or undergoing curvature fluctuations and is flattened when subjected to

tension by the integrated effects of fluid shear stress. This effect may be felt on

the apical surface of the cell, where the glycocalyx transmits drag to the membrane

directly, or where the shear stress impacts on the membrane directly in glycocalyx-

deficient cells. Similarly, membrane perturbation by shear stress may occur on the

basal membrane near focal adhesions, where membrane stresses are amplified. Flat-

tening of the membrane has three effects that occur simultaneously. First, thinning

due to reduction in curvature induces an increased lateral diffusion of lipids and

membrane-bound proteins that may influence their interactions with downstream

effectors. Second, thinning induces an enhanced hydrophobic mismatch that imposes

an energy penalty on transmembrane proteins. These proteins change their conforma-

tions to reduce this energy penalty, thus altering their function. The confrontation

change may lead to ion channel flux, G-protein–coupled receptor activation [79], or

other changes. Third, membrane bending changes the lateral pressure profile in the

membrane and increases the pressure in one leaflet while reducing it in the other [13].

This pressure profile can lead directly to changes in protein function and in the distri-

bution of the (more mobile) cholesterol. Cholesterol translocation from one leaflet to

another may also function to dissipate the stress in the membranes [73], which might

explain the transient nature of shear-induced changes in lipid lateral diffusion [11].

Some elements of this model can be tested experimentally with optical methods

based on time-correlated single photon counting. For example, shear-induced

changes in lipid diffusion can be assessed with FRAP and FCS, while changes in

the interaction with the membrane-domain–selective dyes such as DiI can be eluci-

dated with fluorescence lifetime imaging microscopy (FLIM). More sophisticated

experiments in which proteins are engineered with conformation-sensitive fluores-

cence moieties can be used to detect lipid-mediated conformational changes in
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integral membrane proteins. Other techniques such as fluorescence resonance en-

ergy transfer [117] based on spectral, intensity, or fluorescence lifetime changes may

reveal time- and membrane-dependent alterations of protein conformation in re-

sponse to fluid shear stress. While these fluorescence techniques require extensive

control experiments in order to interpret molecular-level changes, the accessibility

of these techniques makes them the method of choice for single-molecule mecha-

nobiology experiments [51]. In addition, these experimental observations, coupled

with more refined mechanical models based on cellular ultrastructure, will help

elucidate the fundamental underpinnings of mechanotransduction.

Figure 3.12. Use of fluorescence correlation spectroscopy for membrane mechanobiology.
(A) Differential interference contrast images of endothelial cells. (B) Representative auto-
correlation curves of fluorescence obtained from model membranes and DiI C18. (C) Repre-
sentative autocorrelation curves of fluorescence obtained from intact cellular membranes and
DiI C18. (D) Equations: (i) equation is fit to autocorrelation curve by adjusting diffusion time,
(ii) equation or two-dimensional diffusion to obtain diffusion coefficient from characteristic
diffusion time, (iii) y-intercept of autocorrelation gives absolute molecular concentration (N,
number of molecules) in confocal volume.
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