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abstract: The interaction between fruit chemistry and the phys-
iological traits of frugivores is expected to shape the structure of
mutualistic seed dispersal networks, but it has been understudied
compared with the role of morphological trait matching in structur-
ing interaction patterns. For instance, highly frugivorous birds (i.e.,
birds that have fruits as the main component of their diets), which
characteristically have fast gut passage times, are expected to avoid
feeding on lipid-rich fruits because of the long gut retention times
associated with lipid digestion. Here, we compiled data from 84 stud-
ies conducted in the Neotropics that used focal plant methods to re-
cord 35,815 feeding visits made by 317 bird species (155 genera in
28 families) to 165 plant species (82 genera in 48 families). We inves-
tigated the relationship between the degree of frugivory of birds (i.e.,
how much of their diet is composed of fruit) at the genus level and
their visits to plant genera that vary in fruit lipid content. We used
a hierarchical modeling of species communities approach that ac-
counted for the effects of differences in body size, bird and plant phy-
logeny, and spatial location of study sites. We found that birds with
a low degree of frugivory (e.g., predominantly insectivores) tend to
have the highest increase in visitation rates as fruits become more
lipid rich, while birds that are more frugivorous tend to increase
visits at a lower rate or even decrease visitation rates as lipids increase
in fruits. This balance between degree of frugivory and visitation rates
to lipid-poor and lipid-rich fruits provides a mechanism to explain spe-
cialized dispersal systems and the occurrence of certain physiological
nutritional filters, ultimately helping us to understand community-
wide interaction patterns between birds and plants.
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Introduction

Understanding the factors that govern themutualistic inter-
action between plants and frugivorous animals is a long-
held challenge for ecologists. Decades of research show that
two types of factors affect bird-plant interactions. First,
there are contextual factors defined by the spatial, temporal,
and community scenarios in which plant-bird interactions
occur. For instance, rates of frugivory are affected by the
temporal fluctuations in bird and fruit abundances, as well
as by the spatial configuration of fruiting resources per
se (Levey et al. 1984; Loiselle and Blake 1991; Carlo et al.
2007). Second, two classes of trait-matching processes be-
tween mutualistic partners influence community-wide in-
teractions in a more fundamental manner. First, morpho-
logical trait matching such as that between a bird’s bill
gape and the size of fruits and seeds determines whether a
bird species can feed on or disperse the seeds of a fleshy-
fruited plant species (Moermond and Denslow 1985). Sec-
ond, beyond this first morphological trait filter, matching
between the gut digestive capacity and the nutritional and
chemical traits of pulp takes place (Levey and Martínez
del Río 2001). Of these trait-matching processes, morpho-
logical trait matching has been amply studied, while the
physiological nutritional filter has received comparatively
little attention, and its role in structuring mutualistic plant-
frugivore communities remains obscure. Studying how
matching between frugivore physiology and fruit chemis-
try structures interactions has proved challenging, as de-
tailed knowledge of fruit chemical composition and the
inner workings of frugivores’ guts is generally lacking.
Understanding how the digestive physiology of frugi-

vores interacts with fruit chemistry is important because
even morphologically similar frugivores can show signif-
icant differences in digestive traits (Martínez del Rio and
Restrepo 1993; Witmer and Van Soest 1998). Differences
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in gut digestive capacity can lead to differences in fruit-use
patterns between morphologically equivalent bird species
(i.e., with similar body mass, bill gape) given the highly
variable nutrient profiles of fruits, especially regarding the
content of fruit sugars and lipids (Jordano 1995; Witmer
andVan Soest 1998). Despite much variation, fleshy fruits
can be roughly classified as being either sugar rich and
lipid poor (!10% of dry mass in lipids) or lipid rich and
sugar poor, with a majority of plant species pertaining
to the “sugary” category (Moermond and Denslow 1985;
Herrera 1987; Galetti et al. 2011). The hydrophobicity of
lipids makes their abundance in pulp negatively corre-
lated with water content while bearing no correlation with
protein content (protein at any rate is low in the majority
of fleshy fruits; see Jordano 2014). The lipid content of
fruits is also phylogenetically conserved, with most varia-
tion occurring from genus to upper taxonomic levels (Jor-
dano 1995). Thus, many plant genera and families can
characteristically produce lipid-poor and sugar-rich fruits
(e.g., Ficus in Moraceae,Miconia in Melastomataceae) or
lipid-rich and sugar-poor fruits (e.g.,Ocotea in Lauraceae,
Trichilia in Meliaceae; Moermond and Denslow 1985;
Jordano 2014).
Balancing fruit choices based on the relative content of

sugars and lipids of the fruits in a community can be im-
portant because divergent physiological strategies are re-
quired for the digestion and assimilation of each kind of
nutrient (Martinez del Rio et al. 1989; Stiles 1993; Witmer
and Van Soest 1998). For instance, while sugars are fast to
absorb, lipids require much longer gut retention times to
break down metabolically because of their large size and
complexity relative to sugars (Karasov and Martínez del
Río 2007). Thus, it should be expected that bird species
that eat foods requiring longer gut passage times, such
as omnivores and insectivores that constantly mix fruit
with animal matter (Herrera 1984), will be able to readily
use both sugar-rich and lipid-rich fruits. Conversely, as a
result of relatively fast gut transit times of digesta, fru-
givorous birds specializing on sugar-rich fruits would be
unable to properly absorb nutrients from lipid-rich fruits
(Witmer and Van Soest 1998). Birds with fast gut passage
times should therefore avoid lipid-rich fruits, although
such fruits will always be more energetically profitable.
This leads us to predict that lipid-rich fruits should be con-
sumed and dispersedmore frequently by insectivorous and
omnivorous birds that have guts better equipped to deal
with lipids than the more heavily frugivorous species that
specialize on sugary fruits (Levey and Martinez del Rio
2001). In fact, many field studies have reported and high-
lighted the observation that insectivores and omnivores
feed on lipid-rich fruits and disperse their seeds often at
higher rates than predominantly frugivorous birds (e.g.,
Howe and Vande Kerckhove 1979; Carlo et al. 2003; Pizo
and Santos 2011; Carlo and Morales 2016). Still, a formal
test of such interaction patterns has never been conducted
despite the potential ecological and evolutionary implica-
tions for mutualistic plant-frugivore communities if this
indeed is a general phenomenon.
Here, we investigated the relationship between the fru-

givory degree of birds (i.e., howmuch of their diet is com-
posed of fruit) and their relative importance as visitors to
plants that vary in fruit lipid content. We hypothesized
that the relative contribution of visits by predominantly
nonfrugivorous birds would increase with the lipid con-
tent of fruits. Our analyses rely on the largest compilation
of bird visitation records to focal plant species across the
Neotropics, and the results challenge the notion that the
functional role of birds in seed dispersal can be approxi-
mated by simple dietary categorizations such as “frugi-
vore” and “insectivore.”
Methods

Data Compilation

We searched the literature (i.e., papers in peer-reviewed,
indexed journals as well as dissertations and theses) for
studies that reported quantitative measures of feeding
visits by birds to focal fruiting plants. We searched the
databases Google Scholar, Scopus, and Web of Science
using the terms “bird,” “avian,” “frugivory,” and “seed
dispersal” and their Portuguese and Spanish equivalents.
We found 84 studies conducted in five Neotropical coun-
tries between 1971 and 2015 that included a variety of re-
gions, biomes, and habitats (table S1; tables S1–S10 are
available online). Some studies were conducted on the
same site and were combined to yield 70 distinct localities.
These studies share a common focal plant methodology
that entailed observing a plant for a fixed period of time
to record all bird visitors, and they are largely representa-
tive of species from the most common and widespread
plant and bird genera of the Neotropics (tables S2, S5).
Bird and Plant Traits

Our combined focal plant visitation data set has 165
plant species in 82 genera and 48 families and 317 bird
species in 155 genera and 28 families (tables S2, S3, S5).
Estimates for bird functional traits, namely their body
mass and frugivory degree, were obtained for all visiting
bird species from the EltonTraits 1.0 database (Wilman
et al. 2014). However, estimates for the percentage of
lipid content of fruit pulp were found for only 60 plant
species. For the additional 105 plant species, the percent-
age of lipid content of fruits was available from only one
or more congeneric species (table S2; data are available
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in GitHub [https://github.com/jmmorales/lipids/tree/v01;
Pizo et al. 2020]). Given that the majority of plant species
lacked species-level data on the percentage of lipid con-
tent, we opted to conduct analyses at the genus level to
have a wider representation of taxa and study areas. De-
spite the existence of significant interspecific variation,
fruit nutrient profiles tend to be conserved at the genus
and family levels (Jordano 1995). The same holds true
for the diet and body mass of birds (Böhning-Gaese and
Oberrath 1999).
A total of 94 bird genera (60.6%) were represented by

only one species, and 61 genera (39.4%) were represented
by 2–12 species. We used the species-level trait values for
those genera with only one bird species in the data set.
For those with two or more, we used the average trait value
across the recorded species. Psittaciformes were excluded,
since they feedmostly on seeds rather than on pulp (Galetti
and Rodrigues 1992). Of the 82 plant genera, 40 (48.78%)
were represented by one species, and the rest were rep-
resented by a range of 2–22 species. For the 42 plant
generawith two ormore species in the data set, the fruit lipid
content among the species for which we had data was usu-
ally not very variable, although there are a few exceptions
(fig. S1; figs. S1–S5 are available online). Overall, there were
29 genera represented by only a single plant species for
which the fruit lipid content value belonged to that same
species. Thus, 35.4% of genus-level data for the plant trait
is effectively species-level data. Fruit lipid values used for
the rest of the plant genera were averaged across the avail-
able data from congenerics (i.e., including a portion of the
focal plant species depending on availability of fruit lipid
data).
Given that this approach can miss important intra-

generic variation, we examined how fruit and bird trait var-
iance was partitioned among genera and families. For this,
we used linear models where trait values (percentage of
lipid content, bird frugivory degree, and body mass) were
a function of family and genus, with genus nested within
family. The results of this nested analysis mirror findings
of previous studies (e.g., Jordano 1995; Böhning-Gaese
and Oberrath 1999) and show that most of the trait vari-
ance occurs at the family level for both fruit lipids (62.8%)
and bird traits (46.2% for frugivory degree and 74.6% for
body mass), while variance within genera accounts for small
fractions of the total variance (6.0%–20.7%; table S4; fig. S1).
Residual variance (among-species variation and measure-
ment error) was 25.76% for lipids in fruits, 13% for degree
of frugivory, and 34% for body mass.
Visitation Data Analysis

We analyzed the data following the Bayesian hierarchi-
cal modeling of species communities (HMSC) approach
of Ovaskainen et al. (2017), which belongs to the class of
joint species distribution models. In these analyses, we
modeled the number of visits from different bird genera
to the focal plant genera at each site using a negative bi-
nomial distribution, where the expected number of visits
was a linear function of the lipid content of the fruits from
each plant genus (log link). We allowed each bird genus
to have its own intercept and a slope for the regression
on the fruit lipid values of focal plant genera. We modeled
these intercepts and slopes as linear functions of the two
bird traits: degree of frugivory and log-transformed body
size. Both variables were centered and standardized before
the regression. To account for phylogenetic relationship
in the responses of birds to lipid content, we modeled
the residual covariation among the intercepts and slopes
as a function of phylogenetic relationships among the
bird genera.
The idea behind our approach is to relate, in a single

model, the way birds react to the lipid content of fruits
to their degree of frugivory and their body size. In our
model, the number of visits that birds make to a plant
depends on the lipid content of the plant’s fruits. This re-
lationship is captured by the slope of a negative binomial
regression between fruit lipid content and visits, while
the intercept gives the expected number of visits to a plant
with average lipid content (because we centered the vari-
ables, the average lipid content equals the intercept). Both
the intercept and slope are, however, allowed to vary by
bird genus as a linear function of (log) body size and
degree of frugivory. Thus, if the degree of frugivory of dif-
ferent birds affects how they respond to lipids in fruits, we
should find that the coefficient relating degree of frugivory
to the slope of the negative binomial regression is different
from zero.
We included the site and the plant genera as random

effects. The noise structure assumed for both of these
levels was Gaussian decaying covariance functions, where
the distance matrix for sites was based on Euclidian dis-
tance and the distance matrix for plants was based on
phylogenetic distance. The overdispersion parameter of
the negative binomial was estimated as a free parameter.
We obtained consensus trees for the bird and plant genera
phylogenies from https://birdtree.org (Jetz et al. 2012)
and Phylomatic version 3 (Webb and Donoghue 2005),
respectively (figs. S2, S3). Further details on model struc-
ture and priors for all parameters can be found in the sup-
plemental PDF (available online). In general, we used
weakly informative priors, but for parameter r that relates
bird phylogenetic correlations to the covariance among
regression parameters, we used a mixture of two beta dis-
tributions: one with mass concentrated near zero, and
hence allowing for the possibility of no phylogenetic sig-
nal (Beta(1, 100)), and one uniform between zero and one
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(Beta(1, 1)). The proportion in the prior mix was 0.5 for
both distributions.
We fitted the model using Stan through R (Carpenter

et al. 2017; Stan Development Team 2018). We ran each
of fourMarkov chainMonte Carlo analyses for 100,000 it-
erations, of which we discarded the first 50,000 itera-
tions as warm-up and thinned the remaining by 50, yield-
ing 1,000 samples of the posterior distribution per chain
and thus 4,000 samples in total. We examined conver-
gence through distributions of effective sample size po-
tential scale reduction factors (Carpenter et al. 2017). In
addition to the genus-level analyses and to verify the gen-
erality of results using genus-level data, we ran a species-
level analysis using the exact same framework on a data
subset of 60 plant species (in 47 of the 70 sites) for which
both percentage of lipid content and phylogenetic data
were available. The code used to analyze the data is avail-
able in GitHub (https://github.com/jmmorales/lipids/tree
/v01; Pizo et al. 2020).
We used the igraph package (ver. 1.2.4.1; Csardi and

Nepusz 2006) to visualize the relative contribution (i.e.,
with weighted edges) of bird visits from different diet cat-
egories to lipid-rich and lipid-poor plants. For this, we
used 12 studies that included the focal observation of at
least four plant species at the same location and at least
one plant with high lipid content and one with low lipid
content. In each graph, we color-coded plants vertices as
high (133%), medium (10%–33%), and low (0%–10%)
lipid content. We color-coded bird vertices by fruit diet:
primarily insectivorous (degree of frugivory: 0%–33%),
omnivorous (34%–66%), and primarily frugivorous (167%).
Results

The mean lipid content of fruits for the 82 plant genera in
the data set ranged from 0.04% to 83.3% in a dry mass
basis, but more than half of the genera were lipid poor,
with less than 10% lipid content (fig. 1A; table S2). Birds
with predominantly insectivorous and omnivorous diets
comprised 129 of the 155 registered bird genera and were
the most frequent visitors (44.3% and 33.9% of all visits,
respectively). Bird genera with fruit-dominated diets ac-
counted for 21.8% of all visits (fig. 1B). The frequency of
fruit items in the diets of all bird genera had an inverse
relationship with the fraction of invertebrates (mostly
insects) in their diets (fig. 1C). Thus, although alternate
food types may be used (e.g., nectar, seeds), increasing
the degree of frugivory generally implies a decrease of
insectivory.
All Markov chains of the HMSC model converged

(maximum R̂ : 1.002) and obtained a good number of
effective posterior samples (minimum: 2,121; median:
3,872). Results show that most birds (78.84%) responded
positively to fruit lipid content but also that lipids had a
Figure 1: Frequency distribution of the percentage of lipids in fruit pulp (on a dry mass basis; A) and percentage of fruit in bird diets (B) in
a sample of 82 plant genera and 155 bird genera reported in 84 studies conducted in the Neotropics. Note that most plants are lipid poor,
with !10% lipid content, and that most birds visiting plants to eat fruit have diets dominated by nonfruit items (mostly invertebrates). In
general, a lower frugivory degree implies that birds are more insectivorous (C).
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selective effect on bird visitors (table 1). Both the baseline
rate at which birds visited plants and the dependency
of the visitation rate on fruit lipid content depended on
the degree of frugivory and body mass of birds (fig. 2A–
2C). The baseline visitation rate was highest for frugiv-
orous birds, but this was associated with the greatest de-
crease in visitation rate as a function of fruit lipid content
(fig. 2E). That is, birds with a low degree of frugivory
(omnivores and insectivores) tend to have the highest
increase in visitation rates as fruits become more lipid
rich, while birds that are more frugivorous tend to in-
crease visits at a lower rate or even decrease visitation rates
as lipids increase in fruits (fig. 2B). Also, the visitation
rate of small birds was higher than that of large birds, but
there was no clear relationship between body size and
dependency of visitation rate on lipid contents (fig. 2C,
2D). The predicted visitation rate for a bird with an aver-
age body size illustrates the interaction between degree of
frugivory and fruit lipids: insectivores and omnivores
respond positively to fruit lipids but highly frugivorous
birds respond negatively (fig. 2E). Note that this interac-
tion is not estimated as a parameter but rather arises be-
cause both the intercept and the slope of the regression
between lipid in fruit and number of visits are a function
of bird degree of frugivory (and body mass). The same
general patterns are obtained when we run the model us-
ing a subset with the available species-level data only, but
results are weaker (posteriors include zero), possibly be-
cause many bird and plant taxa are missing with this ap-
proach (fig. S4E; tables S6–S8).
The data were not very informative about a phyloge-

netic signal in bird responses. The posterior mean for r
was 0.19, with 95% credible interval of 0.00–0.62 (table S9).
Site random effects were relatively large compared with plant
random effects. Random effects did not depend strongly on
distance among sites or cophenetic distance among plants
(table S10; fig. S5).
The partitioning of species interactions according to

bird diet traits and lipid content was evident when repre-
senting local community interactions as networks (fig. 3).
Within sites, lipid-rich plants were visited mostly by fruit-
eating insectivores, while primarily frugivorous genera mainly
visited low-lipid fruiting plants (fig. 3).
The lipid by fruit diet interaction was also patent at the

scale of bird and plant families (fig. 4). Primarily insectiv-
orous Tyrannidae accounted for most visits to lipid-rich
plant families, such as Meliaceae, Salicaceae, Sapindaceae,
and Loranthaceae, while the primarily frugivorous Thrau-
pidae were more frequent visitors to lipid-poor (and sugar-
rich) Melastomataceae and Moraceae (fig. 4). This is con-
sistent with the moderate phylogenetic effect revealed by
the HMSC model in the pattern of bird responses to fruit
lipid content (table S5). The bird genera in these two pas-
serine families and Turdidae accounted for most visits
(73.6%) to focal plants, the most frequent being the tan-
ager family Thraupidae (32.3%), followed by flycatchers
in Tyrannidae (23.9%) and thrushes in Turdidae (17.3%).
Covariance in visitation rates decreased relatively quickly
with distance among sites or with cophenetic distance among
plants (table S10).
Discussion

Our study shows a balance between the degree of fru-
givory of birds and their visitation rates to lipid-poor
and lipid-rich plant genera. Lipid-poor plants are visited
more often by birds that are more specialized in eating
fruit, while plants that are rich in lipids interact more often
with birds that have predominantly insectivorous diets
(i.e., lower frugivory degrees; figs. 3, 4). This happens even
though frugivorous birds make more visits to fruiting
plants (fig. 2). These results overturn a long-held hypoth-
esis that increased lipid concentration in pulp makes fruits
more attractive to frugivores (Stiles 1993), as not all bird
genera respond positively to increases in fruit lipid con-
tent. Fruit specialization appears to be constrained by the
dominant types of nutrients in fruit, at least in some groups
of common Neotropical passerines.
Table 1: Parameter estimates for the effects of bird traits on the regression between bird visits and fruit lipid content
Mean
 2.50%
 97.50%
 neff
 R̂
Expected intercept
 1.291
 .569
 1.952
 2,829.674
 1.001

Expected slope on lipid content
 .234
 2.251
 .620
 4,160.145
 .999

Frugivory effect on intercept
 .207
 .041
 .379
 3,822.215
 1.000

Frugivory effect on slope
 2.150
 2.283
 2.021
 4,042.242
 1.000

Body mass effect on intercept
 2.187
 2.379
 2.007
 3,970.170
 1.000

Body mass effect on slope
 .031
 2.111
 .180
 4,107.339
 1.000
Note: The expected intercept corresponds to the average (log) proportion of visits by birds with average degree of frugivory and average (log) body mass to a
plant with average lipid content. The degree of frugivory increased this baseline, while body mass decreased it. The expected slope of visits with fruit lipid
content was positive and decreased with increasing frugivory degree. Posterior mean, quantiles, effective sample size of posteriors (neff), and convergence
diagnostics (R̂ ) are reported.
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The underlying mechanism for these patterns is likely
to be driven by the covariance between birds’ dietary spe-
cialization in fruit and the capacity of some avian guts to
digest disparate nutrient types, such as lipids and sugars
(Levey and Karasov 1989; Martínez del Río 1990; Fuentes
1994; Levey and Martínez del Rio 2001). For example,
fruits poor in lipids are typically rich in water and sugars
that are rapidly absorbed by bird guts via active and pas-
sive transport (Jordano 1995; Karasov and Martínez del
Rio 2007). Conversely, absorption of lipids is a longer
multistep process that involves emulsification and hydro-
lysis of larger molecules (Karasov and Martínez del Rio
2007). Thus, it is difficult for predominantly frugivorous
birds with fast gut transit times optimized for sugar ab-
sorption to process lipid-rich fruits (Herrera 1984; Mar-
tínez del Río et al. 1988; Martínez del Río 1990). Predom-
inantly insectivorous birds have slower gut transit times
than heavily frugivorous birds and digestive machinery
adapted to digest lipids found more abundantly in animal
prey, as they are predisposed to readily feed on oily fruits
(Martínez del Río et al. 1988; Fuentes 1994).
Another factor that could contribute to the balance be-

tween frugivory degree and visitation to lipid-poor and
lipid-rich plants is the level of chemical defenses in fruit.
For example, the defense trade-off hypothesis (Cipollini
and Levey 1997) predicts a negative relationship between
some nutrient types and the amounts of secondary me-
tabolites in fruit pulp. Fruit removal rates of lipid-poor
fruits are on average slower than those of lipid-rich fruits
(Cazetta et al. 2007). Slow removal times can thus in-
crease the susceptibility of lipid-poor fruits to microbial
pathogens, promoting selection for the chemical defense
Figure 2: Percentage of fruit in diet (frugivory degree) and body mass affect the response of birds to the lipid content of fruits. A shows the
intercept of the regression between the expected number of visits (log link) and fruit lipid content against the degree of frugivory (percentage
of fruit in their diet) of each bird genus. B shows how the slope of the relationship between fruit lipids and visits (log link) changes with the
bird’s degree of frugivory. C and D show intercepts and slopes in relation to body size, respectively. The thick lines show the modeled linear
relationships between intercepts and slopes and the degree of frugivory. The thin lines show 95% credible intervals. There is no line in D, as
we did not find a clear relationship between slopes and body mass. In E, by combining the estimated intercepts and slopes as functions of
frugivory degree for average body mass and transforming the log link to number of visits, we can see that birds that usually consume low
amounts of fruit according to EltonTraits (Wilman et al. 2014) respond more strongly to lipid-rich fruits, while frugivorous birds decrease
the number of visits when fruit lipid content increases.



Fruit Lipids and Avian Frugivory 000
of their pulp (Cipollini and Levey 1997). Accordingly,
heavily frugivorous birds have superior detoxifying ca-
pacities than predominantly insectivorous birds (Herrera
1984), which could further accentuate differences in the
dietary guilds of birds visiting lipid-rich and lipid-poor
plants.
Ecological and Evolutionary Implications

Lipids and Diet Specialization of Frugivorous Birds. Our
results show that birds previously portrayed as “opportu-
nistic” frugivores for having diets dominated by insects
contribute the majority of community-level frugivory in-
teractions for plants with oily fruits (figs. 3, 4). Consistent
with our findings, a recent study on Bursera tree species
in the dry forests of southwestern Mexico findsMyarchus
flycatchers (Tyrannidae) to be the primary seed dispersers
(Almazán-Núñez et al. 2016). In fact, our analysis shows
that tyrant flycatchers are, after tanagers and allies (Thrau-
pidae), the second-most frequent Neotropical frugivores,
cumulatively contributing more visits to focal plants than
the better-known thrushes (Turdidae; fig. 4). It is puzzling
that the role of this key Neotropical family, which happens
to also be the most species rich of the hemisphere, has
been so neglected by frugivory studies (e.g., Fleming and
Kress 2013). In fact, the contribution of tyrant flycatchers
(Tyrannidae, chiefly insectivorous) to frugivory of plant
families with oily fruit (e.g., Meliaceae, Flacourtiaceae) is
                          

                           

Motta Jr. 1991 Argel-de-Oliveira 1999 Gondim 2005

Alves 2011 Francisco & Galetti 2002 Correia 1997

Athiê 2009 Figueiredo 1996    Robinson et al. 2015   Hasui 1994

Figure 3: Circular network graphs from 11 Neotropical studies that recorded bird visits to five or more plant species in a community, in-
cluding plants with different lipid content in fruits (high: 133%; medium: 10%–33%; low: !10%). Bird genera were grouped by fruit diet
(frugivorous: 167% fruit diet; omnivorous: 33%–67% fruit diet; insectivorous: !33% fruit diet). Edges are weighted by the number of visits,
and the interactions involving lipid-rich fruits are highlighted in red. Note that in most sites, lipid-rich fruits (red vertices) interact primarily
with insectivores (gray vertices) or omnivores (light blue vertices). Conversely, highly frugivorous birds (blue vertices) interact primarily
with lipid-poor (sugar-rich) plants (yellow vertices). Data sources are indicated on top of each graph (see the supplemental PDF, available
online, for more details and complete references).
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remarkable across all Neotropical studies, noting that their
frugivory services extend beyond oily fruits to virtually all
plant families (fig. 4).
Although the specialization of highly frugivorous birds

on sugary fruits is well established (Martínez del Río et al.
1992; Witmer 1998), the specialization of insectivorous
birds on lipid-rich fruit is unclear. Studies report that some
bird species with diets dominated by insects (e.g., starlings)
prefer lipid-rich fruits and lack enzymes to digest certain
sugars, pointing to fruit nutrient specialization (Martinez
del Rio et al. 1988; Fuentes 1994). However, laboratory
and field studies show that many insectivorous birds com-
monly feed on and effectively disperse seeds of lipid-poor
fruits (e.g., Borowicz 1988; Carlo 2005; González-Castro
et al. 2015). Conversely, reports of highly frugivorous bird
genera, such as Tangara, Spindalis, Euphonia, and Chloro-
phonia, feeding on lipid-rich fruits are rare or nonexistent.
This suggests that specialization on sugary fruits may limit
interactions with plants with oily fruits, but not vice versa.
Our findings illustrate another way in which plants se-

lect among agents of seed dispersal. Because fruits can in-
teract with both mutualistic and antagonistic organisms,
it is intriguing how plants filter the antagonistic interactions
in favor of the mutualistic ones. Selection can be achieved
by several strategies that include mechanical barriers, such
as the size and accessibility of fruits (Guimarães et al. 2008),
and secondary metabolites that deter some frugivores but
not others (Tewksbury and Nabhan 2001). But what are
Figure 4: Heat map showing visits by fruit-eating birds to focal fruiting plants from the pooled data of 84 Neotropical studies. The average
fruit diet (5data range, bars on right) and the average percentage of fruit lipid content (5data range, bars on top) are shown for the genera in
each bird and plant family present in the sample. Note that the heavy concentration of interactions in the lower left corner of the graph is
indicative of phylogenetic structuring of the interactions for both bird and plant families. Plant clades: 1 p asterids; 2 p monocots; 3 p
magnolids; 4 p rosids. Bird clades: a p Passeriformes (oscines); b p Passeriformes (suboscines); c p Piciformes.
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the benefits for plants, if any, of incurring such evolution-
ary choices? Some evidence suggests that oil-rich fruits have,
on average, larger seeds and higher seed-to-pulp mass ra-
tios than fruits with low lipid content (Cazetta et al. 2007).
Thus, the evolution of lipid-rich fruits may allow plants
to pack larger seeds into less pulp and attract predomi-
nantly insectivorous birds while discouraging small frugi-
vore specialists.
From a plant’s perspective, insectivores can present dif-

ferences or even advantages for seed dispersal compared
with some of the highly frugivorous Neotropical birds.
Many insectivores have little mandibulation ability and
haveno choice but to swallow entire fruits and seeds (Moer-
mond and Denslow 1985). Species with less frugivorous
diets may also generate broader seed shadows and disperse
seeds to longer distances because they spend less time feed-
ing on plants (Pratt and Stiles 1983) and move more fre-
quently across habitats in heterogeneous landscapes (Pizo
and Santos 2011; Carlo and Morales 2016; González-Varo
et al. 2017; Camargo et al. 2020). In contrast, the longer res-
idence times of specialized frugivores on fruiting plants
leads to shorter dispersal distances and highly aggregated
seed shadows (Aukema 2004). Many specialized frugivores
(e.g., tanagers) are skillful in handling fruit to separate seeds
from pulp of many fruits, particularly those with larger
seeds, which reduces the effectiveness of seed dispersal, par-
ticularly for fruits with large seeds and higher seed-to-pulp
mass ratios (Moermond and Denslow 1985; Levey 1987;
Carlo et al. 2003; Schupp et al. 2010).
Fruit Lipids and the Structure of Plant-Frugivore Interac-
tion Networks. The patterning of bird-plant interactions
by fruit nutrients offers another mechanism structuring
mutualistic seed dispersal networks. Our analyses show
that fruit lipid content could explain why some of the pos-
sible community interactions are infrequent or never re-
corded. Thus, fruit lipid content can contribute to so-called
forbidden interactions and promote modularity (sensu Ole-
sen et al. 2011; Bascompte and Jordano 2014). Our results
also help explain the apparent paradox of studies that re-
port plants with lipid-rich fruits being dispersed chiefly
by predominantly insectivorous birds, such as tyrant fly-
catchers (Tyrannidae; Restrepo et al. 2002; Guerra and Pizo
2014; Almazán-Nuñez et al. 2016) and vireos (Vireonidae;
Howe and Vande Kerckhove 1979; Pizo 1997; Carlo et al.
2003), in communities with no shortage of highly frugiv-
orous birds.
Perspectives for Future Research. More than 25 years ago,
Martínez del Río and Restrepo (1993) suggested that an
in-depth study of the diversity of digestive characteristics
of frugivores hand in hand with advances in fruit nutrient
analysis would reveal a much richer picture of the mutu-
alistic interactions of frugivores and plants. The data we
compiled and analyzed here are a step toward under-
standing the effects of lipids on fruvivore-plant commu-
nity interactions, but much remains to be investigated.
Do fruit lipids have similar effects outside the Neotropics?
We believe so, but studies designed to test the generality
of our results are needed. Some evidence has been found
in other regions, including the Mediterranean, where in-
sectivores (Ficedula hypoleuca and Parus caeruleus) are
the primary frugivores of the most lipid-rich fruits (i.e.,
Cornus sanguinea and Pistacia terebinthus; Fuentes 1994).
In North America, warblers and other bird insectivores
are the primary frugivores of lipid-rich fruits of Myrica
spp. (Place and Stiles 1992).
It will be important to assess whether the interaction

between frugivore diet specialization and plant nutrient
profiles affect the evolution of plant-frugivore communi-
cation through color and scent trait “branding” of fruits
(Stournaras et al. 2015; Nevo et al. 2019). For instance,
fruits rich in sugars can have distinctive color and scent
trait spaces that set them apart as a group and thus serve
as honest advertisement for their nutrient content. But
lipid-rich fruits seem to lack such nutrient-branding dis-
tinctiveness, at least in terms of color trait spaces (Stour-
naras et al. 2015). Differences in the branding and honesty
of signaling in fruits with contrasting nutrient profiles are
intriguing and should be further investigated, especially
because of correlations that exist between fruit nutrient
and morphological traits (Cazetta et al. 2012) and their
influence on the frugivore species attracted and the associ-
ated seed dispersal effectiveness (sensu Schupp et al. 2010).
Ultimately, future research on these topics will improve our
understanding of the ecological and evolutionary drivers
of plant-animal communities and their mutualistic networks
of interaction (Stouffer and Bascompte 2011; Guimarães
et al. 2017).
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