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The fusion of observational data with numerical simulation promises to
provide greater understanding of physical phenomenon than either
approach alone can achieve.

The most critical challenge here is to provide a quantitative assessment
of how closely our estimates reflect reality in the presence of model
uncertainty as well as measurement errors and uncertainty.
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IDEAL FILTER

DISCRETE DYNAMICS , DISCRETE MEASUREMENTS

xk+1 = f(xk)+νk

yk+1 = h(xk+1)+ωk+1

CONTINUOUS DYNAMICS , DISCRETE MEASUREMENTS

dx = f (xt , t)dt +dβt [tk, tk+1]

yk+1 = h(xk+1)+ωk+1
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IDEAL FILTER
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Discrete Time Measurement Update 
Bayes’ Rule

Discrete

Continuous 
[𝑡𝑘 , 𝑡𝑘+1]
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LINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME KALMAN FILTER

ASSUMPTIONS

Initial conditions, Process noise and Measurement noise are
Gaussian distributed and mutually independent processes.

State and Measurement model equations are linear.

PROCESS AND MEASUREMENT MODEL

xk+1 = Fkxk +νk

yk+1 = Hk+1xk+1 +ωk+1

where

x0 ∼N (x0 : x̂0,P0)

νk ∼N (νk : 0,Qk)

ωk+1 ∼N (ωk+1 : 0,Rk+1)
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LINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME KALMAN FILTER

TIME EVOLUTION

Chapman-Kolmogorov Equation: Given the state pdf at time step k

p(xk|Yk) = N (xk : x̂k|k,Pk|k)

where Yk is set of measurement upto time k,

p(xk+1|Yk) =
∫

p(xk+1|xk) . p(xk|Yk)dxk

The state transition probability density p(xk+1|xk) is given as

p(xk+1|xk) = N (xk+1 : Fkxk,Qk)

p(xk+1|Yk) =
∫

N (xk+1 : Fkxk,Qk) .N (xk : x̂k|k,Pk|k)dxk
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LINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME KALMAN FILTER

TIME EVOLUTION

p(xk+1|Yk) =
1√

(2π)n|Pk+1|k|
. exp

[
− 1

2
(
xk+1− x̂k+1|k

)T P−1
k+1|k

(
xk+1x̂k+1|k

)]

The prior pdf p(xk+1|Yk) has mean x̂k+1|k and covariance Pk+1|k given as

x̂k+1|k = Fk x̂k|k

Pk+1|k = FkPk|kFT +Qk

Hence, the prior pdf remains Gaussian

As we know the pdf remains Gaussian, an easier approach is to directly compute the mean and
covariance from the linear model equations as:

x̂k+1|k = E[xk+1] = E
[
Fkxk

]
+E[νk] = FkE

[
xk
]
= Fk x̂k|k

Pk+1|k = E
[(

xk+1−Fk x̂k|k
)(

xk+1−Fk x̂k|k
)T ]

= E
[(

Fkxk +νk−Fk x̂k|k
)(

Fkxk +νk−Fk x̂k|k
)T ]

= E
[
Fk(xk− x̂k|k)(xk− x̂k|k)

T FT
k +νkν

T
k
]
= FkPk|kFT +Qk
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LINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME KALMAN FILTER

MEASUREMENT UPDATE

Starting with the prior pdf at time step k+1,

p(xk+1|Yk) = N (xk+1 : x̂k+1|k ,Pk+1|k)

the posterior pdf from Bayes’ rule at the same time step is given by

p(xk+1|Yk+1) =
p(yk+1|xk+1)p(xk+1|Yk)∫

p(yk+1|xk+1)p(xk+1|Yk)dxk+1

where the measurement likelihood pdf p(yk+1|xk+1) can be derived
from the measurement model equations as:

p(yk+1|xk+1) = N (yk+1 : Hk+1xk+1, Rk+1)
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LINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME KALMAN FILTER

Numerator of Bayes’ rule is simplified as:

p(yk+1|xk+1)p(xk+1|Yk) = N (yk+1 : Hk+1xk+1, Rk+1)N (xk+1 : x̂k+1|k ,Pk+1|k)

=
1√

|2πRk+1|
.

1√
|2πPk+1|k|

. exp
[
− 1

2
(
yk+1−Hk+1xk+1

)T R−1
k+1

(
yk+1−Hk+1xk+1

)
− 1

2
(
xk+1− x̂k+1|k

)T P−1
k+1|k

(
xk+1− x̂k+1|k

)]
The exponent is:

⇒−1
2
(
yk+1−Hk+1xk+1

)T R−1
k+1

(
yk+1−Hk+1xk+1

)
− 1

2
(
xk+1− x̂k+1|k

)T P−1
k+1|k

(
xk+1− x̂k+1|k

)
⇒−1

2

[
yT

k+1R−1
k+1yk+1 +xT

k+1
(
P−1

k+1|k +HT
k+1R−1

k+1Hk+1
)︸ ︷︷ ︸

A

xk+1

−2
(
yT

k+1R−1
k+1Hk+1 + x̂T

k+1|kP−1
k+1|k

)︸ ︷︷ ︸
bT

xk+1 + x̂T
k+1|kP−1

k+1|k x̂k+1|k
]

⇒−1
2

[
yT

k+1R−1
k+1yk+1 +xT

k+1Axk+1−2bT xk+1 + x̂T
k+1|kP−1

k+1|k x̂k+1|k
]
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LINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME KALMAN FILTER

The denominator of Bayes’ rule is given as:∫
p(yk+1|xk+1)p(xk+1|Yk)dxk+1 =

1√
|2πRk+1|

.
1√

|2πPk+1|k|
.

∫
exp
[
− 1

2
yT

k+1R−1
k+1yk+1−

1
2

xT
k+1Axk+1 +bT xk+1−

1
2

x̂T
k+1|kP−1

k+1|k x̂k+1|k
]

dxk+1

=
1√

|2πRk+1|
.

1√
|2πPk+1|k|

. exp
[
− 1

2
yT

k+1R−1
k+1yk+1−

1
2

x̂T
k+1|kP−1

k+1|k x̂k+1|k
]

.
∫

exp
[
− 1

2
xT

k+1Axk+1 +bT xk+1

]
dxk+1

=

√
|2πA−1|√

|2πRk+1||2πPk+1|k|
. exp

[
− 1

2
yT

k+1R−1
k+1yk+1−

1
2

x̂T
k+1|kP−1

k+1|k x̂k+1|k +
1
2

bT A−T b
]

The posterior pdf from Bayes’ rule is given as:

p(xk+1|Yk) =
1√
|2πA−1|

. exp
[
− 1

2
xT

k+1Axk+1 +bT xk+1−
1
2

bT A−T b
]

=
1√
|2πA−1|

. exp
[
− 1

2
(
xk+1−A−1b

)T A
(
xk+1−A−1b

)]
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LINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME KALMAN FILTER

p(xk+1|Yk+1) =
1√
|2πA−1|

. exp
[
− 1

2
(
xk+1−A−1b

)T A
(
xk+1−A−1b

)]

bT =
(
yT

k+1R−1
k+1Hk+1 + x̂T

k+1|kP−1
k+1|k

)
A = P−1

k+1|k +HT
k+1R−1

k+1Hk+1

A−1 = Pk+1|k−Pk+1|kHT
k+1
(
Rk+1 +Hk+1Pk+1|kHT

k+1
)−1︸ ︷︷ ︸

Kk+1

Hk+1Pk+1|k

= Pk+1|k−Kk+1Hk+1Pk+1|k

A−1b =
(
Pk+1|k−Kk+1Hk+1Pk+1|k

)(
HT

k+1R−1
k+1yk+1 +P−1

k+1|k x̂k+1|k
)

= x̂k+1|k +Kk+1
(
yk+1−Hk+1x̂k+1|k

)
Hence the posterior pdf still remains Gaussian even after Bayes’ Rule update, with mean and
covariance as

x̂k+1|k+1 = A−1b = x̂k+1|k +Kk+1
(
yk+1−Hk+1x̂k+1|k

)
Pk+1|k+1 = A−1 = Pk+1|k−Kk+1Hk+1Pk+1|k
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LINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME KALMAN FILTER

In summary, starting from time step k with p(xk|Yk) = N (xk : x̂k|k ,Pk|k)

TIME EVOLUTION

p(xk+1|Yk) = N (xk+1 : x̂k+1|k ,Pk+1|k)

x̂k+1|k = Fkx̂k|k

Pk+1|k = FkPk|kFT +Qk

MEASUREMENT UPDATE

p(xk+1|Yk+1) = N (xk+1 : x̂k+1|k+1 ,Pk+1|k+1)

x̂k+1|k+1 = x̂k+1|k +Kk+1
(
yk+1−Hk+1x̂k+1|k

)
Pk+1|k+1 = Pk+1|k−Kk+1Hk+1Pk+1|k

Kk+1 = Pk+1|kHT
k+1
(
Rk+1 +Hk+1Pk+1|kHT

k+1
)−1

The Kalman filter fuses the system dynamic model with measurement data
in an optimal manner.
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LINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME MINIMUM VARIANCE APPROACH FOR KALMAN FILTER

MINIMUM VARIANCE ESTIMATE

min
x̂k+1/k+1

Tr
{

E[(xk+1− x̂k+1/k+1)(xk+1− x̂k+1/k+1)
T ]
}

i.e. find an estimate that minimizes the posterior variance

ESTIMATOR: KALMAN FILTER LIKE UPDATE

x̂k+1/k+1 = x̂k+1/k +Kk+1(yk+1− ŷk+1)

The assumed estimator is unbiased:

E[x̂k+1/k+1] = E[x̂k+1/k +Kk+1(yk+1− ŷk+1)] = E[x̂k+1/k]+Kk+1(E[yk+1]−E[ŷk+1])

= FkE[x̂k|k]+Kk+1(Hk+1E[xk+1]−Hk+1E[x̂k+1/k])

= E[xk+1]+Kk+1(Hk+1F x̂k|k−Hk+1F x̂k|k) = E[xk+1]
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LINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME MINIMUM VARIANCE APPROACH FOR KALMAN FILTER

min
Kk+1

Tr
{

E[(xk+1− x̂k+1/k+1)(xk+1− x̂k+1/k+1)
T ]
}

with x̂k+1/k+1 = x̂k+1/k +Kk+1(yk+1− ŷk+1)

min
Kk+1

Tr
{

E[(xk+1− x̂k+1/k−Kk+1(yk+1− ŷk+1))(xk+1− x̂k+1/k−Kk+1(yk+1− ŷk+1))
T ]
}

min
Kk+1

Tr
{

E[
(
xk+1− x̂k+1/k

)(
xk+1− x̂k+1/k

)T
]+Kk+1E[(yk+1− ŷk+1)(yk+1− ŷk+1)

T ]KT
k+1

−Kk+1E[(yk+1− ŷk+1)(xk+1− x̂k+1/k)
T ]−E[

(
xk+1− x̂k+1/k

)
(yk+1− ŷk+1)

T ]KT
k+1

}
min
Kk+1

Tr
{

Pk+1|k +Kk+1Py
k+1|kKT

k+1−Kk+1Pyx
k+1|k−Pxy

k+1|kKT
k+1

}
The optimal gain Kk+1 is given by

Kk+1 = Pxy
k+1(P

y
k+1/k)

−1

no assumptions on the state pdf.

All the expectations are with respect to the prior pdf p(xk+1|Yk).
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LINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME MINIMUM VARIANCE APPROACH FOR KALMAN FILTER

ŷk+1 = E[yk+1] = E[Hk+1xk+1 +ωk+1] = Hk+1E[xk+1] = Hk+1x̂k+1|k

Py
k+1/k = E[(yk+1− ŷk+1)(yk+1− ŷk+1)

T ]

= E[
(
Hk+1xk+1 +ωk+1−Hk+1x̂k+1|k

)(
Hk+1xk+1 +ωk+1−Hk+1x̂k+1|k

)T
]

= Hk+1E[
(
xk+1− x̂k+1|k

)(
xk+1− x̂k+1|k

)T
]HT

k+1 +E[ωk+1ω
T
k+1]

= Hk+1Pk+1|kHT
k+1 +Rk+1

Pxy
k+1 = E[

(
xk+1− x̂k+1/k

)
(yk+1− ŷk+1)

T ]

= E[
(
xk+1− x̂k+1/k

)(
Hk+1(xk+1− x̂k+1/k)+ωk+1

)T
]

= E[
(
xk+1− x̂k+1|k

)(
xk+1− x̂k+1|k

)T
]Hk+1 = Pk+1|kHT

k+1

The Kalman Filter gain is then given as:

Kk+1 = Pxy
k+1(P

y
k+1/k)

−1 = Pk+1|kHT
k+1
(
Hk+1Pk+1|kHT

k+1 +Rk+1
)−1

Minimum variance estimator is same as Kalman Filter and hence optimal for linear
system with Gaussian pdfs
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NONLINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME EXTENDED KALMAN FILTER

Extended Kalman Filter: Linearization of system model equations

PROCESS AND MEASUREMENT MODEL

xk+1 = fk(xk)+νk

yk+1 = hk+1(xk+1)+ωk+1

Starting with the most recent estimates at time k i.e. x̂k|k and Pk|k, the posterior
estimates are approximated as

E[xk+1] = E[ fk(xk)+νk] = E[ fk(xk)]+E[νk] = E[ fk(xk)]

= E[ fk(xk)] = E[ fk(x̂k|k)+Fk
(
xk− x̂k|k

)
+ . . .]≈ fk(x̂k|k)
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NONLINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME EXTENDED KALMAN FILTER

using the approximation

fk(xk)− fk(x̂k|k)≈ Fk
(
xk− x̂k|k

)
where Fk ≡

∂ fk
∂xk
|xk=x̂k|k

E[
(
xk+1− fk(x̂k|k)

)(
xk+1− fk(x̂k|k)

)T
]

= E[
(

fk(xk)+νk− fk(x̂k|k)
)(

fk(xk)+νk− fk(x̂k|k)
)T

]

= E[
(

Fk
(
xk− x̂k|k

)
+νk

)(
Fk
(
xk− x̂k|k

)
+νk

)T
]

= FkE[
(
xk− x̂k|k

)(
xk− x̂k|k

)T
]FT

k +E[νkν
T
k ] = FkPk|kFT

k +Qk

Only mean and covariance are propagated

EKF: TIME EVOLUTION STEP

x̂k+1|k = fk(x̂k|k)

Pk+1|k = FkPk|kFT
k +Qk
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NONLINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME EXTENDED KALMAN FILTER

Minimum variance estimator with Kalman Filter like update for the EKF:

min
Kk+1

Tr
{

E[(xk+1− x̂k+1/k+1)(xk+1− x̂k+1/k+1)
T ]
}

with x̂k+1/k+1 = x̂k+1/k +Kk+1(yk+1− ŷk+1)

min
Kk+1

Tr
{

Pk+1|k +Kk+1Py
k+1|kKT

k+1−Kk+1Pyx
k+1|k−Pxy

k+1|kKT
k+1

}
The optimal gain Kk+1 is given by

Kk+1 = Pxy
k+1(P

y
k+1/k)

−1

Using Taylor Series Expansion of h(xk+1) about the current estimate at time k+1 i.e. x̂k+1|k

hk+1(xk+1) = hk+1(x̂k+1|k)+Hk+1(xk+1− x̂k+1) where Hk+1 ≡
∂hk+1

∂xk+1
|xk+1=x̂k+1|k

ŷk+1 = E[yk+1] = E[hk+1(xk+1)]+E[ωk+1]≈ hk+1
(
x̂k+1|k

)
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NONLINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME EXTENDED KALMAN FILTER

Py
k+1/k = E[(yk+1− ŷk+1)(yk+1− ŷk+1)

T ]

≈ E[
(
hk+1(xk+1)+ωk+1−hk+1(x̂k+1|k)

)(
hk+1(xk+1)+ωk+1−hk+1(x̂k+1|k)

)T
]

= Hk+1E[
(
xk+1− x̂k+1|k

)(
xk+1− x̂k+1|k

)T
]HT

k+1 +E[ωk+1ω
T
k+1]

= Hk+1Pk+1|kHT
k+1 +Rk+1

Pxy
k+1 = E[

(
xk+1− x̂k+1/k

)
(yk+1− ŷk+1)

T ]

≈ E[
(
xk+1− x̂k+1/k

)(
hk+1(xk+1)+ωk+1−hk+1(x̂k+1|k)

)T
]

= E[
(
xk+1− x̂k+1|k

)(
xk+1− x̂k+1|k

)T
]Hk+1 = Pk+1|kHT

k+1

The Extended Kalman Filter gain is then given as

Kk+1 = Pxy
k+1(P

y
k+1/k)

−1 = Pk+1|kHT
k+1
(
Hk+1Pk+1|kHT

k+1 +Rk+1
)−1

PUNEET SINGLA (LAIRS.ENG.BUFFALO.EDU) UNCERTAINTY ANALYSIS & ESTIMATION AFRL WORKSHOP 19 / 52



NONLINEAR SYSTEM WITH GAUSSIAN UNCERTAINTY
DISCRETE TIME EXTENDED KALMAN FILTER

In summary,

TIME EVOLUTION

x̂k+1|k = fk(x̂k|k)

Pk+1|k = FkPk|kFT
k +Qk

Fk ≡
∂ fk

∂xk
|xk=x̂k|k

MEASUREMENT UPDATE

x̂k+1/k+1 = x̂k+1/k +Kk+1(yk+1−hk+1(x̂k+1|k))

Pk+1|k+1 = Pk+1|k−Kk+1Hk+1Pk+1|k

Kk+1 = Pk+1|kHT
k+1
(
Hk+1Pk+1|kHT

k+1 +Rk+1
)−1

Hk+1 ≡
∂hk+1

∂xk+1
|xk+1=x̂k+1|k

Only mean and covariance are propagated and updated.

All expectation expression E[.] evaluated by linearizations⇒ analytical expressions

Estimates can quickly diverge due to linearizations involved.

MOTIVATION FOR UNSCENTED AND QUADRATURE KALMAN FILTER

⇒ Avoid linearization altogether and evaluate these expectation integrals directly using
appropriate quadrature scheme.

Unscented Transform, Gauss-hermite Quadratures or Conjugate Unscented Transform
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NONLINEAR FILTERING
USING QUADRATURES/CUBATURES/SIGMA POINTS

DISCRETE DYNAMIC SYSTEM

xk+1 = f(xk)+νk

yk+1 = h(xk+1)+ωk+1

Evolution of the exact conditional pdf is given by two stages

TIME EVOLUTION STEP

p(xk+1|Yk) =
∫

N (xk+1 : f(xk),Qk) . p(xk|Yk)dxk

MEASUREMENT UPDATE STEP

p(xk+1|Yk+1) =
N (yk+1 : h(xk+1),Rk+1) . p(xk+1|Yk)∫

N (yk+1 : h(xk+1),Rk+1) . p(xk+1|Yk)dxk+1
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NONLINEAR FILTERING
USING QUADRATURES/CUBATURES/SIGMA POINTS

Gaussian Approximated conditional pdfs:

TIME EVOLUTION STEP

p(xk+1|Yk) =
∫

N (xk+1 : f(xk),Qk).p(xk|Yk)dxk

Mean :
∫

xk+1 p(xk+1|Yk)dxk+1⇒ x̂k+1/k

Covariance :
∫
(xk+1− x̂k+1/k)(xk+1− x̂k+1/k)

T p(xk+1|Yk)dxk+1⇒ Pk+1/k

x̂k+1/k =
∫

f(xk)N (xk : x̂k/k,Pk/k|Yk)dxk

Pk+1/k =
∫

f(xk)f(xk)
T N (xk : x̂k/k,Pk/k|Yk)dxk− x̂k+1/k x̂T

k+1/k +Qk

GAUSSIAN PDF AT k+1

p(xk+1|Yk)≈N (xk+1 : x̂k+1/k,Pk+1/k)
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NONLINEAR FILTERING
USING QUADRATURES/CUBATURES/SIGMA POINTS

Gaussian Approximated conditional pdfs:

TIME EVOLUTION STEP

p(xk+1|Yk) =
∫

N (xk+1 : f(xk),Qk).N (xk : x̂k/k,Pk/k)dxk

Mean :
∫

xk+1 p(xk+1|Yk)dxk+1⇒ x̂k+1/k

Covariance :
∫
(xk+1− x̂k+1/k)(xk+1− x̂k+1/k)

T p(xk+1|Yk)dxk+1⇒ Pk+1/k

x̂k+1/k =
∫

f(xk)N (xk : x̂k/k,Pk/k|Yk)dxk

Pk+1/k =
∫

f(xk)f(xk)
T N (xk : x̂k/k,Pk/k|Yk)dxk− x̂k+1/k x̂T

k+1/k +Qk

GAUSSIAN PDF AT k+1

p(xk+1|Yk)≈N (xk+1 : x̂k+1/k,Pk+1/k)
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NONLINEAR FILTERING- MEASUREMENT UPDATE
USING QUADRATURES/CUBATURES/SIGMA POINTS

Assuming a Kalman Filter like update

x̂k+1/k+1 = x̂k+1/k +Kk+1(yk+1− ŷk+1)

min
Kk+1

Tr
{

E[(xk+1− x̂k+1/k+1)(xk+1− x̂k+1/k+1)
T ]
}

(1)

= Tr
{

Pk+1/k

}
−Tr

{
Pxy

k+1KT
k+1

}
−Tr

{
Kk+1(P

xy
k+1)

T
}
+Tr

{
Kk+1Py

k+1/kKT
k+1

}
(2)

The Kalman gain is given as

Kk+1 = Pxy
k+1(P

y
k+1/k)

−1

KALMAN FILTER LIKE UPDATE p(xk+1|yk+1)

x̂k+1/k+1 = x̂k+1/k +Kk+1(yk+1− ŷk+1)

Pk+1/k+1 = Pk+1/k−Kk+1(P
xy
k+1/k)

T

Kk+1 = Pxy
k+1(P

y
k+1/k)

−1

p(xk+1|Yk+1)≈N (xk+1 : x̂k+1/k+1,Pk+1/k+1)
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NONLINEAR FILTERING
USING QUADRATURES/CUBATURES/SIGMA POINTS

The integrals to be evaluated are summarised as

TIME EVOLUTION STEP

x̂k+1/k =
∫

f(xk)N (xk : x̂k/k ,Pk/k |Yk)dxk

Pk+1/k =
∫

f(xk)f(xk)
T N (xk : x̂k/k ,Pk/k |Yk)dxk

− x̂k+1/k x̂T
k+1/k +Qk

MEASUREMENT UPDATE STEP

ŷk+1 =
∫

h(xk+1/k)N (xk+1/k : x̂k+1/k ,Pk+1/k)dxk+1/k

Py
k+1/k =

∫
h(xk+1/k)h(xk+1/k)

T N (xk+1/k : x̂k+1/k ,Pk+1/k)dxk+1/k

− ŷk+1 ŷT
k+1 +Rk+1

Pxy
k+1 =

∫
xk+1/kh(xk+1/k)

T N (xk+1/k : x̂k+1/k ,Pk+1/k)dxk+1/k

− x̂k+1/k ŷT
k+1

(X;w) ∈



Monte Carlo samples
Gauss-Hermite Product rule
Sparse Grid Gauss-Hermite Quadrature rule
Unscented Transform
Cubature Kalman Filter
Conjugate Unscented Transform
Minimal Cubature rules
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NONLINEAR FILTERING: NUMERICAL EXAMPLE
AIR TRAFFIC SCENARIO
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Figure: Air Traffic Scenario

xk =


1

sin(ΩT )
Ω

0 − 1− cos(ΩT )
Ω

0

0 cos(ΩT ) 0 −sin(ΩT ) 0

0
1− cos(ΩT )

Ω
1

sin(ΩT )
Ω

0

0 sin(ΩT ) 0 cos(ΩT ) 0
0 0 0 0 1

xk−1 +νk−1 ,

[
rk
θk

]
=


√

(ξk )2 +(ηk )2

tan−1 (
ηk

ξk
)

+ωk

TABLE: Comparison of 2-norms of RMSE in position, velocity and turn rate for T = 5s for Air Traffic Problem.

||RMSE||2 in PF−mean CKF UKF CUT 4 CUT 6 CUT 8
Position 115.47 989.15 685.90 245.30 138.82 135.89
Velocity 24.16 17330.23 12849.90 6127.86 2153.53 34.73

Ω 0.0393 2.873 2.396 1.329 0.636 0.090
No.o f points 5000 10 11 42 83 355
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Figure: RMSE in position for Air Traffic Problem.



NONLINEAR FILTERING: NUMERICAL EXAMPLE
AIR TRAFFIC SCENARIO
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(c) Angular rate (all filters)
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Figure: State Estimation Error vs. the Measurement Time Interval, T for the Air Traffic problem

PUNEET SINGLA (LAIRS.ENG.BUFFALO.EDU) UNCERTAINTY ANALYSIS & ESTIMATION AFRL WORKSHOP 26 / 52



NONLINEAR FILTERING: NUMERICAL EXAMPLE
LORENZ MODEL WITH PARAMETER UNCERTAINTY
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Figure: Lorenz system

ẋ = σ(y− x)

ẏ = ρx− y− xz

ż = xy−β z

σ = 10, ρ = 28 and β = 8/3. For uncertain σ and ρ , the
appended state vector is [x,y,z,σ ,ρ]T with mean and covariance

µ0 = [1.50887,−1.531271,25.46091,10,28]T ;

P0 = Diag([4,4,4,2,4]T )

TABLE: Comparison of RMSE for various filters

PF−mean CKF UKF CUT 4 CUT 6 CUT 8
||RMSE||2 with Q = 0.002I5×5 14.7986 0.8945 0.8934 0.8974 0.9004 0.9002
||RMSE||2 with Q = 0.005I5×5 1.0826 6.3419 4.2319 1.9162 1.8156 1.7225

No. of pts 5000 10 11 42 83 355
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Figure: Comparison of Filters for Lorenz model with varying measurement time intervals T



FILTERING UNDER BAYESIAN FRAMEWORK
ADAPTIVE GAUSSIAN SUM FILTER (AGSF)

Measurement Model:

zk = h(tk,xk)+ νννk νννk ∼N (0,Rk)

  Bayesian 
 Framework 

Get
µk+1|k+1

Pk+1|k+1

Wk+1|k+1

System Dynamics 

Classical 
Filtering 

AGSF

FPKE/CKE

Observational Data   

Wt+∆t|k = Wt|k

Wt+∆t|k �= Wt|k

Continue Till Final Time

Use EKF or UKF measurement equations to get µµµk+1|k+1, Pk+1|k+1.

Use Bayes’ rule to get the new weights.
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FILTERING UNDER BAYESIAN FRAMEWORK
ADAPTIVE GAUSSIAN SUM FILTER (AGSF)

Consider the following measurement model in discrete time

zk = h(tk,xk)+νννk νννk ∼N (0,Rk) (3)

Then the Bayes’ rule updates the weight according to the following equation:

wi
k+1|k+1 =

wi
k+1|kγ i

∑
N
i=1 wi

k+1|kγ i
i = 1,2, ...,N (4)

where N = total number of Gaussian components and

γ
i ∼N (zk+1−µµµ

i
k+1|k,H

(i)
k P(i)

k+1|k

(
H(i)

k

)T
+Rk) for EKF and γ

i ∼N (zk+1−µµµ
i
k+1|k, Ŝk+1) for

UKF.

Hk =
∂

∂xk
h(tk,xk) |xk=µµµk+1|k (5)

Ŝk+1 = innovation covariance1

1Julier, S., and Uhlmann, J.,"Unscented Filtering and Nonlinear Estimation"
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FILTERING UNDER BAYESIAN FRAMEWORK
ADAPTIVE GAUSSIAN SUM FILTER (AGSF)

Highly Parallelized framework for Bayesian Nonlinear Filtering.
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ADAPTIVE GAUSSIAN SUM FILTER
EXAMPLE:TWO BODY PROBLEM

Measurements are available when the satellite is in the field of view of the radar of an

observation center. For simulation purposes, we consider the observation center to be located at

39.007◦ latitude and 104.883◦ longitude near Air Force Academy in Colorado springs. The

cartesian coordinates of this location is given as:

rSite =
[
−1275.1219 −4797.9890 3994.2975

]
km

It is assumed that the measurements are available after 5.6585 hours i.e. time at which the last

time-update was made. Six different cases are discussed

Figure: Different measurement cases. Case 4 corresponds to prior mean
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ADAPTIVE GAUSSIAN SUM FILTER
EXAMPLE:TWO BODY PROBLEM
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(d) case 6

Figure: Contours corresponding to the posterior pdf of AGSF, UKF and EKF in cartesian
space when only position measurements are available
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ADAPTIVE GAUSSIAN SUM FILTER
EXAMPLE:TWO BODY PROBLEM

Filters Pos. Error In Position (km) Pos. Variance of Position (km2)

AGSF 0.237 0.7837

UKF 0.244 0.0339

EKF 1.3329 0.03194

TABLE: Norm of error/variance when only position measurements are available and they are
not at prior mean (Pos. Error = Posterior Error, Pos. Variance = Posterior Variance)2

The EKF provides completely inconsistent estimates of orbital states.

2K. Vishwajeet, P. Singla and M. Jah, “Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits,” AIAA
Journal of Guidance, Control and Dynamics, January 2014, DOI: 10.2514/1.G000472.
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ADAPTIVE GAUSSIAN SUM FILTER
EXAMPLE:TWO BODY PROBLEM

Scenario II: Range, azimuthal and elevation angles are available for measurement

Measurement model is:

zk+1(1) =

√
(xk+1(1)− rSite(1))2 +(xk+1(2)− rSite(2))2 +(xk+1(3)− rSite(3))2 +ννν1

zk+1(2) = tan−1 xk+1(3)− rSite(3)√
(xk+1(1)− rSite(1))2 +(xk+1(2)− rSite(2))2

+ννν2

zk+1(3) = tan−1 xk+1(2)− rSite(2)
xk+1(1)− rSite(1)

+ννν3

where, ννν =
[

ννν1 ννν2 ννν3

]T
∼N (0,R2) and, R2 = diag

0.01︸︷︷︸
km2

0.0174 0.0174︸ ︷︷ ︸
rad2


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(b) case 2

Figure: Contours corresponding to the posterior pdf of AGSF, UKF and EKF in cartesian space when range and angle

measurements are available
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ADAPTIVE GAUSSIAN SUM FILTER
EXAMPLE:TWO BODY PROBLEM
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Figure: Contours corresponding to the posterior pdf of AGSF, UKF and EKF in cartesian
space when range and angle measurements are available
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ADAPTIVE GAUSSIAN SUM FILTER
EXAMPLE:TWO BODY PROBLEM

Filters Pos. Error In Position (km) Pos. Variance of Position (km2)

AGSF 2.042 3.4608

UKF 7.1679 3.1315

EKF 7.7479 0.3987

TABLE: Norm of error when range and angular measurements are available and they are not
at prior mean (Pos. Error = Posterior Error, Pos. Variance = Posterior Variance)3

The EKF provides completely inconsistent estimates of orbital states.

3K. Vishwajeet, P. Singla and M. Jah, “Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits,” AIAA
Journal of Guidance, Control and Dynamics, January 2014, DOI: 10.2514/1.G000472.
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NUMERICAL EXPERIMENTS
ICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION
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NUMERICAL EXPERIMENTS
ICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

The BENT integral eruption column model was used to produce
eruption column parameters (mass loading, column height, grain
size distribution) given a specific atmospheric sounding and
source conditions.

BENT takes into consideration atmospheric (wind) conditions as
given by atmospheric sounding data.
Plume rise height is given as a function of volcanic source and
environmental conditions.

The PUFF Lagrangian model was used to propagate ash parcels
in a given wind field (NCEP Reanalysis).

PUFF takes into account dry deposition as well as dispersion and
advection.

Polynomial chaos quadrature (PCQ) was used to select sample
points and weights in the uncertain input space of vent radius,
vent velocity, mean particle size and particle size variance.
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environmental conditions.

The PUFF Lagrangian model was used to propagate ash parcels
in a given wind field (NCEP Reanalysis).

PUFF takes into account dry deposition as well as dispersion and
advection.

Polynomial chaos quadrature (PCQ) was used to select sample
points and weights in the uncertain input space of vent radius,
vent velocity, mean particle size and particle size variance.
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NUMERICAL EXPERIMENTS
ICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

TABLE: Eruption source parameters based on observations of Eyjafjallajökull volcano and
information from other similar eruptions.

Parameter Value range PDF Comment

Vent radius, b0 , m 65-150 Uniform Measured from radar image of summit vents
Vent velocity, w0 ,
m/s

Range: 45-124 Uniform M. Ripepe, Geneva, Switzerland, 2010, pre-
sentation

Mean grain size,
Mdϕ

3.5-7 Uniform Woods and Bursik (1991), Table 1, vulcanian
and phreatoplinian. A. Hoskuldsson, Iceland
meeting 2010, presentation

σϕ 0.5−3 Uniform Woods and Bursik (1991), Table 1, vulcanian
and phreatoplinian.
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NUMERICAL EXPERIMENTS
ICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

• 4×107 particles were used in BENT-PUFF model.

Location 52N, 13.5E: conc is the puff computed absolute air concentration (in mg/m3) in a grid cell of size 0.5◦×0.5◦×2km
at 1200hours on 16th April, 2010 , and count is the number of PUFF particles in that cell

# of particles height
(km)

conc.×10−4 count height conc.×10−5 count height conc.×10−7 count

105 3 0.74 28 5 4.23 16 7 - -
5×105 3 1.17 221 5 3.54 67 7 - -
106 3 1.12 405 5 4.12 156 7 - -
2×106 3 1.12 884 5 4.03 305 7 - -
4×106 3 1.09 1655 5 4.10 3620 7 1.32 2
8×106 3 1.15 3471 5 4.15 1256 7 1.98 6
107 3 1.10 4151 5 3.99 1510 7 2.91 11
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MEAN ASH TOP HEIGHT
ICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

Figure: 94 Clenshaw Curtis Runs Figure: 161 CUT Runs
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meanmaxheightPCQ.avi
Media File (video/avi)


meanmaxheightCUT.avi
Media File (video/avi)



STANDARD DEVIATION OF ASH TOP HEIGHT
ICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

Figure: 94 Clenshaw Curtis Runs Figure: 161 CUT Runs
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stdmaxheightPCQ.avi
Media File (video/avi)


stdmaxheightCUT.avi
Media File (video/avi)



PROBABILITY OF ASH TOP HEIGHT
ICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

(A) 0041-04-16 00:00:00Z

Model: probability, outer contour 0.2, inner 0.7

Data: ash top height, m

(a) 00 hrs

(B) 0041-04-16 06:00:00Z

Model: probability, outer contour 0.2, inner 0.7

Data: ash top height, m

(b) 06 hrs

(C) 0041-04-16 00:00:00Z

Model: probability, outer contour 0.2, inner 0.7

Data: ash top height, m

(c) 12 hrs

(D) 0041-04-16 18:00:00Z

Model: probability, outer contour 0.2, inner 0.7

Data: ash top height, m

(d) 18 hrs

R. Madankan, et al., “Computation of Probabilistic Hazard Maps and Source Parameter Estimation For Volcanic Ash Transport

and Diffusion," Journal of Computational Physics, DOI: 10.1016/j.jcp.2013.11.032.
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APPLICATION TO ASH DISPERSION PROBLEM

SOURCE PARAMETER ESTIMATION

• Ash top-height (obtained from satellite imagery) is used as measurement data.

• Satellite data from three different time instants (April 16th at 0600 hrs, 1200 hrs, and
1800 hrs) are used as measurement data.

• Satellite observed ash top-heights are assumed to be accurate to within 100 m intervals
around the observed height.

• Due to height quantization in the bent-puff model, ash top-height provided by bent-puff
model is assumed to be polluted with zero-mean uniformly distributed random noise
between −1000 m and +1000 m.

• Minimum variance framework was used for source parameter estimation.
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APPLICATION TO ASH DISPERSION PROBLEM

SOURCE PARAMETER ESTIMATION
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APPLICATION TO ASH DISPERSION PROBLEM

SOURCE PARAMETER ESTIMATION
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APPLICATION TO ASH DISPERSION PROBLEM

ASH PLUME FORECASTING

Comparison of Forecast of Ash top-height and Satellite Observation on April 16th,1200 hrs.

(a) Model Forecast (b) Satellite Observation

Comparison of Forecast of Ash top-height and Satellite Observation on April 16th,1800 hrs.

(a) Model Forecast (b) Sateelite Observation
Satellite observation

PUNEET SINGLA (LAIRS.ENG.BUFFALO.EDU) UNCERTAINTY ANALYSIS & ESTIMATION AFRL WORKSHOP 47 / 52



SUMMARY OF FILTERING ALGORITHMS
PRO & CONS

Non-Gaussian Approximation:
AGSF > Quadrature & CUT based filters > UKF > EKF

Computational Cost:
AGSF > Quadrature & CUT based filters > UKF ∼ EKF

Ease of Implementation:
Quadrature & CUT based filters ∼ UKF > EKF > AGSF
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