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KOLMOGOROV EQUATION
NONLINEAR SYSTEM

Consider the dynamical system driven by Gaussian white noise

dx(t) = f (x(t), t)dt +G(x(t), t)dβ (t)

E[dβ (t)β
T (t)] = Q(t)dt p(x(t0)) = N (x|µµµ0,ΣΣΣ 0)

The time-evolution of the state PDF is given by the FPKE:

∂ p(x, t)
∂ t

= LFP (p(x, t))

=
n

∑
i=1

∂ (p fi)
∂xi

+
1
2

n

∑
i, j=1

∂ 2
[(

GQGT )
i j p
]

∂xi∂x j

SOLUTION CONSTRAINTS

1 Positivity of the PDF: p(x, t)≥ 0 ∀x, t.
2 Infinite Boundary Conditions of the PDF: p(t,±∞) = 0

3 Normality of the PDF:
∫

p(x, t)dx = 1.
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KOLMOGOROV EQUATION
NONLINEAR SYSTEM

The positivity constraint can be circumvented by assuming the
PDF has the form:

p(x, t) = eβ (x,t) (1)

To enforce the infinite boundary conditions constraint, the true
PDF is regularized by a weighting function:

pA(x, t) = p(x, t)W (x, t,θθθ) = e(β (x,t)+βW (x,t,θθθ)) = eβA(x,t,θ)

W (x, t,θθθ)≥ 0 ∀x, t,θθθ .
W (−∞, t,θθθ) =W (∞, t,θθθ) = 0 ∀t,θθθ .

The weight function can be assumed to be a Gaussian function
and constructed from the propagation of quadrature points:

βW (x, t,θθθ) = log

[
1√

|2πΣΣΣ(t)|

]
− 1

2
(x−µµµ(t))T

ΣΣΣ(t)−1(x−µµµ(t))

(2)
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KOLMOGOROV EQUATION
NONLINEAR SYSTEM

RESIDUAL ERROR: RESULTING LOG-PDF EQUATION

e(x, t) =−β̇A(x, t,θθθ)−
∂βA(x, t,θθθ)

∂θθθ

T
θ̇θθ − fT (x, t)

[
∂βA(x, t,θθθ)

∂x
+

∂θθθ

∂x
∂βA(x, t,θθθ)

∂θθθ

]
−Tr

[
∂ f(x, t)

∂x

]
+

1
2

Tr
[

g(t)Q(t)gT (t)
(

∂ 2βA(x, t,θθθ)
∂x∂xT +

∂βA(x, t,θθθ)
∂x

∂βA(x, t,θθθ)
∂xT

+2
∂βA(x, t,θθθ)

∂x

(
∂θθθ

∂x
∂βA(x, t,θθθ)

∂θθθ

)T
+

∂ 2θθθ

∂x∂xT
∂βA(x, t,θθθ)

∂θθθ
+

∂ 2βA(x, t,θθθ)
∂θθθ∂xT

∂θθθ

∂x

+

(
∂θθθ

∂x
∂βA(x, t,θθθ)

∂θθθ

)(
∂θθθ

∂x
∂βA(x, t,θθθ)

∂θθθ

)T )]

A truncated expansion is used to approximate the state PDF:

βA(x, t) = β (x, t)+βW (x,θθθ) = c(t)T︸ ︷︷ ︸
unknown

Φ(x)+ cT
W Φ(x) (3)
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KOLMOGOROV EQUATION
WEIGHTED RESIDUAL

Method of Weighted Residuals: Residual error projected onto
set of mutually-independent weight functions.∫

Ω

ψ j(x)e(x, t) = 0, j = 1,2, · · · ,m (4)

PUNEET SINGLA (LAIRS.ENG.BUFFALO.EDU) UNCERTAINTY ANALYSIS & ESTIMATION AFRL WORKSHOP 5 / 43



KOLMOGOROV EQUATION
WEIGHTED RESIDUAL

Method of Weighted Residuals: Residual error projected onto
set of mutually-independent weight functions.∫

Ω

ψ j(x)e(x, t) = 0, j = 1,2, · · · ,m (4)

Galerkin Method: ψ j(x) = φ j(x).

Least-Squares: ψ j(x) = ∂e(x,t)
∂c j

.

Collocation Method: ψ j(x) = δ (x−x j).

All these methods results in m equations for m unknowns.
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KOLMOGOROV EQUATION
COLLOCATION CONSTRAINTS

Collocation ODE: A ck+1−ck
∆ t +B+D(ck) = 0

A j = Φ(x j)
T (5)

B j =Tr
[

∂ f(tk,x)
∂x

]
x=x j

+ f(x j, tk)T

[
∂Φ(x)

∂x

T

(ck + cW )

]
x=x j

(6)

D j(ck) =−
1
2

Tr
[

GQp(t)GT

·
(
(ck + cW )T ∂Φ(x)

∂x
∂Φ(x)

∂xT (ck + cW )

+
∂ 2

∂x∂xT

[
(ck + cW )T

Φ(x)
])]

x=x j

(7)
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COLLOCATION APPROACH
CHALLENGES

In 1−D, optimal choice is:
Collocation Points: Gaussian quadrature points.
Basis Functions: Lagrange Interpolation polynomials.

φ(x) =
N

∑
i=1

(
yi

N

∏
k=1,k 6=i

x− xi

xi− xk

)
In multidimensional systems, tensor product is required for
Gaussian quadrature points and Lagrange Polynomials.

(a) 4th Order Lagrange Poly: 1−D (b) 8th Order Lagrange Poly: 2−D
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COLLOCATION APPROACH
CHALLENGES

Tensor product of quadrature points:
Exponential growth (N = qd).

Lagrange Interpolation polynomials in d−dimensional space:
Very high order basis set→ Runge/Gibbs Phenomenon.
Tensor product of second-order polynomials results in one
fourth-order polynomial in 2−D.

Standard polynomial basis set:
nth order polynomial basis set→ combinatorial growth

(n+d
d

)
.

Fully-determined system is desired.
In general,

(n+d
d

)
6= qd .

Main Challenge

# of basis function 6= # of collocation points.
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COLLOCATION APPROACH
CHALLENGES

Over-Determined System: # of basis functions (m) < # of
collocation points (N)→ No Solution!
Under-Determined System: # of basis functions (m) > # of
collocation points (N)→ Infinitely Many Solutions!

Basis Functions for a given set of collocation points.

Least/Minimal degree interpolation, active area of research.

Find the set of monomials of least degree that are ‘suitable’ for
the given collocation points.

Form the Vandermonde Matrix, columns consists of monomials
of increasing order, and each row corresponds to evaluation at
one point

Perform Gauss elimination with partial pivoting (based on
specific rules).
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COLLOCATION APPROACH
SPARSE APPROXIMATION

Known function  
values at the points 

Known basis functions of increasing degree à  

Convex Optimization !!  

Unknown  
coefficients 

Fewer points than the number 
of basis functions N<m 
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COLLOCATION APPROACH
SPARSE APPROXIMATION

Example: We want to interpolate the known polynomial function:  
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COLLOCATION APPROACH
SPARSE APPROXIMATION

Least-degree interpolation error ~ 106.122 

Exactly reproduces the monomials and 
coefficients of the original function with 

just 16 points !! PUNEET SINGLA (LAIRS.ENG.BUFFALO.EDU) UNCERTAINTY ANALYSIS & ESTIMATION AFRL WORKSHOP 10 / 43



COLLOCATION APPROACH
COLLOCATION POINTS

Clenshaw−Curtis

Gauss−Legendre

Sparse Grid
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Dimension of random variable
Applied Quadrature Scheme

(c) CUT Comparison

𝝈
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𝒔𝟑
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(d) CUT Points in 3D

The Conjugate Unscented Transform (CUT)→ non-product,
minimal cubature rules.
CUT originally developed to compute desired-order polynomial
function (expectation) integrals with the same accuracy as
Gaussian quadrature methods.
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SPARSE COLLOCATION APPROACH
SPARSE APPROXIMATION + MINIMAL CUBATURE RULES

Convex optimization problem:

Sparsity Condition: min
ck+1

||Kck+1||1 (8)

subject to:

Collocation: Ack+1 = Ack−∆ tB−∆ tD(ck) (9)

An iterative l1 optimization routine is proposed to optimally
select the required basis functions to obtain a sparse, minimal
polynomial expression for the log-PDF.

Minimal set of collocation points generated via CUT.

Number of non-contributing basis functions is lower-bounded by
m−N.
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SPARSE COLLOCATION APPROACH
SPARSE APPROXIMATION + MINIMAL CUBATURE RULES

Algorithm 1: Iterative Weighted l1 optimization: c∗k+1 =
WeightedOpt(K,ck,cW ,A,B,D(ck),m,N,∆ t,ε)
Data: K, ck, cW , A, B, D(ck), m, N, ∆ t, ε

Result: c∗k−1 with at least m−N components set equal to zero
C =∅
c∗k+1 = argmin

ck+1
‖Kck+1‖1

Subject to: Ack+1 = A(ck)−∆ tBck−∆ tD(ck)
C = C ∪ index{c∗k+1 = 0}
if card(C )≥ m−N then

Return c∗k+1.

else
while card(C )< m−N do

K = 1/(c∗k+1 + ε)
c∗k+1 = argmin

ck+1
‖Kck+1‖1

Subject to: Ack+1 = A(ck)−∆ tBck−∆ tD(ck)
C = C ∪ index{c∗k+1 = 0}
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SPARSE COLLOCATION APPROACH
SPARSE APPROXIMATION + MINIMAL CUBATURE RULES

Algorithm 2: Collocation-Based Solution of the Fokker-Planck-
Kolmogorov Equation
Data: f(x), G(x), m basis φ(x), initial values of coefficients c0,

weight function coefficients cW , discretized time vector t, time
step ∆ t, collocation points Xi i = 1,2, . . . ,N, initial weight
matrix K0, and weight update parameter ε .

Result: β (x, t).
Set K = K0.
Compute matrix A.
for t = 0, t ≤ t f , k = k+1 do

Compute B, D and F using ck.
ck+1 =WeightedOpt(K,ck,cW ,A,B,D(ck),m,N,∆ t,ε).
β (k+1,x) = (ck+1 + cW )T Φ(x).
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SPARSE COLLOCATION APPROACH
REGULARIZATION

Map global domain to unit hypercube via linear transformation.

y = T(x+B0) (10)

Map system dynamics and Jacobian to local space:

ẏ = f̄(y, t)+ ḠΓ (t) (11)

Collocation points mapped to local space.
Basis set generated in local space.

Simple to re-write FPKE in local space directly using mapped
dynamics.

Solution in local domain can be mapped to global domain:

p(x, t) = p(y = T(x+B0), t)
∣∣∣∣∂y
∂x

∣∣∣∣ (12)
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SPARSE COLLOCATION APPROACH
BENCHMARK PROBLEMS

1 Duffing Oscillator.
t f = 100 sec. with ∆ t = 0.01 sec.
CUT8-G: µµµ = 0, ΣΣΣ = diag [0.125, 0.05]→ N = 21.
Polynomials up to and including 15th order→ m = 136.
Global domain: x ∈ [−2,2]→ T = 1

2 I2×2.
2 Van-der-Pol Oscillator.

t f = 20 sec. with ∆ t = 0.01 sec.
CUT8-G: µµµ = 0, ΣΣΣ = 1.25I2×2→ N = 21.
Polynomials up to and including 15th order→ m = 136.
Global domain: x ∈ [−5,5]→ T = 1

5 I2×2.
3 Quintic Oscillator.

t f = 100 sec. with ∆ t = 0.01 sec.
CUT8-U on x ∈ [±1.25,±0.75]→ N = 21.
Polynomials up to and including 10th order→ m = 66.
Global domain: x ∈ [−2,2]→ T = 1

2 I2×2.
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SPARSE COLLOCATION APPROACH
BENCHMARK PROBLEMS
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Duff2Movie.avi
Media File (video/avi)


VDPMovie.avi
Media File (video/avi)


QuinticMovie.avi
Media File (video/avi)



SPARSE COLLOCATION APPROACH
DUFFING OSCILLATOR: ẍ+η ẋ+αx+βx3 = g(t,x)Γ (t)

(a) t = 5 seconds (b) t = 10 seconds

(c) t = 20 seconds

FIGURE: (3.7) Duffing Oscillator: PDF Contours
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SPARSE COLLOCATION APPROACH
DUFFING OSCILLATOR: ẍ+η ẋ+αx+βx3 = g(t,x)Γ (t)

(a) Approximate Stationary
PDF

(b) True Stationary PDF

(c) Error in Stationary PDF

FIGURE: (3.9) Duffing Oscillator: Stationary PDFs
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SPARSE COLLOCATION APPROACH
DUFFING OSCILLATOR: ẍ+η ẋ+αx+βx3 = g(t,x)Γ (t)

(a) Non-Zero Coefficients (b) Zero Coefficients

FIGURE: (3.10 and 3.11) Duffing Oscillator: Coefficient Transients
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SPARSE COLLOCATION APPROACH
VAN-DER-POL OSCILLATOR: ẍ+β ẋ+ x+α(x2 + ẋ2)ẋ = g(t,x)Γ (t)

(a) t = 2 seconds (b) t = 5 seconds

FIGURE: (3.12) Van-der-Pol Oscillator - PDF Contours
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SPARSE COLLOCATION APPROACH
VAN-DER-POL OSCILLATOR: ẍ+β ẋ+ x+α(x2 + ẋ2)ẋ = g(t,x)Γ (t)

(a) Approximate Stationary
PDF

(b) True Stationary PDF

(c) Error in Stationary PDF

FIGURE: (3.14) Van-der-Pol Oscillator - Stationary PDFs
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SPARSE COLLOCATION APPROACH
VAN-DER-POL OSCILLATOR: ẍ+β ẋ+ x+α(x2 + ẋ2)ẋ = g(t,x)Γ (t)

(a) Non-Zero Coefficients (b) Zero Coefficients

FIGURE: (3.15 and 3.16) Van-der-Pol - Coefficient Transients
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SPARSE COLLOCATION APPROACH
QUINTIC OSCILLATOR: ẍ+η ẋ+ x(ε1 + ε2x2 + ε3x4) = g(t,x)Γ (t)

(a) t = 10 seconds (b) t = 20 seconds

(c) t = 30 seconds

FIGURE: (3.17) Quintic Oscillator - PDF Contours
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SPARSE COLLOCATION APPROACH
QUINTIC OSCILLATOR: ẍ+η ẋ+ x(ε1 + ε2x2 + ε3x4) = g(t,x)Γ (t)

(a) Approximate Stationary
PDF

(b) True Stationary PDF

(c) Error in Stationary PDF

FIGURE: (3.19) Quintic Oscillator - Stationary PDFs
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SPARSE COLLOCATION APPROACH
QUINTIC OSCILLATOR: ẍ+η ẋ+ x(ε1 + ε2x2 + ε3x4) = g(t,x)Γ (t)

(a) Non-Zero Coefficients (b) Zero Coefficients

FIGURE: (3.20 and 3.21) Quintic Oscillator - Coefficient Transients
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SPARSE COLLOCATION APPROACH
TWO-BODY PROBLEM

The governing dynamics are given as:

r̈ =− µ

r3 r+J2 (13)

The non-spherical gravitational perturbation is expressed as:

J2x =−1.5J2
µ

r2

(
Re

r

)2

(1−5
z2

r2 )
x
r

(14)

J2y =−1.5J2
µ

r2

(
Re

r

)2

(1−5
z2

r2 )
y
r

(15)

J2z =−1.5J2
µ

r2

(
Re

r

)2

(3−5
z2

r2 )
z
r

(16)

It is assumed that the initial state is characterized by its (known)
PDF: x0 ∼ p(x0).
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SPARSE COLLOCATION APPROACH
TWO-BODY PROBLEM

In the absence of process noise, the FPKE reduces to Liouville’s
Equation:

∂ p(x, t)
∂ t

=−∂ p(x, t)
∂x

T

f(x, t)− p(x, t) ·Tr
[

∂ f(x, t)
∂x

]
(17)

Let x(t) = φ(x0, t0) be an invertible, continuously differentiable
mapping, with inverse given by: x0 = φ−1(x(t), t).
The transformation of variables (TOV) technique can be used to
obtain a solution for the PDF of x(t) as:

p(x(t), t) = p
[
x0 = φ

−1(x(t), t)
]∣∣∣∣∂φ−1

∂x(t)

∣∣∣∣ (18)

This allows for determination of the propagated PDF from
knowledge of the initial PDF!
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SPARSE COLLOCATION APPROACH
TWO-BODY PROBLEM

Define the state transition matrix:

Φ(t, t0) =
∂x(t)
∂x0

(19)

Time evolution expressed as:

Φ̇(t, t0) = A(t)Φ(t, t0), A(t) =
∂ f
∂x

∣∣∣∣
x(t)

= ∇f(x, t) (20)

TOV solution can be rewritten as:

p(x(t), t) = p
[
x0 = φ

−1(x(t), t)
]∣∣Φ(t, t0)−1∣∣ (21)

Determinant evolves according to:

|Φ(t, t0)|= exp
(∫ t

0
∇ · f(x,s) ds

)
(22)

p(x(t)) = p
[
x0 = φ

−1(x(t), t)
]

exp
(
−
∫ t

0
∇ · f(x(s),s)ds

)
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SPARSE COLLOCATION APPROACH
TWO-BODY PROBLEM

p(x(t))

φ(x0, t0 )

p[x0 = φ
−1(x(t), t)]

FIGURE: Evolution of Sample Probability

Existence of the true PDF solution allows for determination of
discrete probability values at any time instant!

Sample taken from initial PDF is propagated through dynamics.
Initial discrete probability value mapped to current time instant
via solution of Liouville’s equation.

Exploit analytical expression to avoid direct numerical solution
of FPKE.PUNEET SINGLA (LAIRS.ENG.BUFFALO.EDU) UNCERTAINTY ANALYSIS & ESTIMATION AFRL WORKSHOP 30 / 43



SPARSE COLLOCATION APPROACH
TWO-BODY PROBLEM

Assume a series expansion for the log-PDF:

β (x(t), t) = cT (t)Φ(x) (23)

The behavior of the coefficients is not explicitly constrained by
the FPKE.

The departure from the previous PDF is to be learned as:

p(x(tk), tk) = δ p(x(tk), tk)p(x(tk), tk−1) (24)

Transforming into log-PDF form:

β (x(tk), tk) = δβ (x(tk), tk)+β (x(tk), tk−1) (25)

Applying the series approximation yields:

β (x(tk), tk)≈ cT
k Φ(x) = δcT

k Φ(x(tk))+ cT
k−1Φ(x(tk)) (26)
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SPARSE COLLOCATION APPROACH
TWO-BODY PROBLEM

Assume a series expansion for the log-PDF:

β (x(t), t) = cT (t)Φ(x) (27)

The behavior of the coefficients is not explicitly constrained by
the FPKE.

The departure from the previous PDF is to be learned as:

p(x(tk), tk) = δ p(x(tk), tk)p(x(tk), tk−1) (28)

Transforming into log-PDF form:

β (x(tk), tk) = δβ (x(tk), tk)+β (x(tk), tk−1) (29)

Applying the series approximation yields:

β (x(tk), tk)≈ cT
k Φ(x) = δcT

k Φ(x(tk))+ cT
k−1Φ(x(tk)) (30)
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SPARSE COLLOCATION APPROACH
TWO-BODY PROBLEM

Assume a series expansion for the log-PDF:

β (x(t), t) = cT (t)Φ(x) (31)

The behavior of the coefficients is not explicitly constrained by
the FPKE.

The departure from the previous PDF is to be learned as:

p(x(tk), tk) = δ p(x(tk), tk)p(x(tk), tk−1) (32)

Transforming into log-PDF form:

β (x(tk), tk) = δβ (x(tk), tk)+β (x(tk), tk−1) (33)

Applying the series approximation yields:

β (x(tk), tk)≈ cT
k Φ(x) = δcT

k Φ(x(tk))+ cT
k−1Φ(x(tk)) (34)
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SPARSE COLLOCATION APPROACH
TWO-BODY PROBLEM

The evolution of the discrete probability values along
characteristic curves can be found exactly.
Theoretically, an infinite number of samples would sample the
true PDF exactly.

Random sampling should be avoided to ensure consistent results.
The CUT methodology can be used to generate a minimal set of
samples from the initial PDF for propagation!

A sparse optimization framework can be used to determine the
departure PDF.

The hard collocation constraint can be transformed into a soft
constraint for numerical stability.

To reduce numerical error propagation between time instances,
the l2 norm can be re-minimized over the truncated dictionary.

For numerical stability, propagated points are mapped to a space
of zero mean, identity covariance at each time instant.
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SPARSE COLLOCATION APPROACH
TWO-BODY PROBLEM

Initial sparse optimization:

Sparse Optimization: min
δck

||Kδck||1 (35)

Soft Collocation: subject to: ||Aδck−B(ck−1)||2 ≤ εεε (36)

where:
Ai = Φ(xi(tk))T , i = 1,2, ...,N (37)

Bi(ck−1) = log [p(xi(tk))]−Φ(xi(tk))T ck−1, i = 1,2, ...,N
(38)

xi(tk) is the ith sample propagated to time tk, and p(xi(tk)) is the
discrete probability value of the sample at time tk.
The l2 norm is minimized using the truncated dictionary as:

l2 Conditioning: min
δc′k
||A′δc′k−B(ck−1)||2 (39)
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SPARSE COLLOCATION APPROACH
TWO-BODY PROBLEM

The proposed method can be applied to a Sun-Synchronous
Low-Earth Orbit (LEO) with initial errors characterized by:

µµµ0 = [7000, 0, 0, 0, −1.0374090357, 7.477128835]T (40)

ΣΣΣ 0 = diag(1,1,1,1×10−6,1×10−6,1×10−6) (41)

Using CUT8-G, N = 745 initial conditions are available for
propagation.

Including polynomials up to eighth order results in a complete
dictionary of m = 3003 basis functions.

The soft constraint tolerance is chosen as εεε = 1×10−6.

50,000 Monte Carlo samples are available for comparison.
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FIGURE: (3.22) Two-Body PDF Contours at T/2
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FIGURE: (3.23(a)-(d)) Posiiton PDF Surfaces and Histograms at T/2.
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FIGURE: (3.23(e)-(h)) Velocity PDF Surfaces and Histograms at T/2.
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FIGURE: (3.24) Two-Body PDF Contours at T
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FIGURE: (3.25(a)-(d)) Posiiton PDF Surfaces and Histograms at T .
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CONCLUSIONS

A collocation-based approach is developed to compute a solution
to the Fokker-Planck-Kolmogorov Equation (FPKE).

The collocation points are generated using the Conjugate
Unscented Transform (CUT).
A sparsity-enhancing l1 optimization routine is provided to
remove the non-contributing basis functions.
No assumptions made on structure of log-PDF!

Numerical experiments exhibit promising results.
MC Histograms are well-approximated by PDF surfaces obtained.
Obtained PDF contours cover spread of MC points
For some examples, true coefficients obtained in the stationary
case.
Stationary PDFs captured with low relative error.
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