Project title: Research team:	Cloud-based Machine Health Monitoring and Prognosis Dazhong Wu, Connor Jennings, Jannis Terpenny (PSU)				
Industry	Daziong wu, Connor Jennings, Jannis Terpenny (FSO)				
collaborators:	IME at PSU				
Thrust area:	Intelligence				
Current TRL:	Estimate current TRL score – 3				
Final TRL:	Estimate final (completed project) TRL score – 6				
Project type:	Proposed				
Start date:	08/01/2016				
Completion date:	07/31/2017				
Percent complete:	0%				
Budget:	\$50,000				
IAB funding:	\$50,000				
Other funding:	\$0				

Industrial Relevance

- Problem: It has been very challenging for manufacturers to predict remaining useful life of machinery in real-time as well as perform proactive maintenance actions.
- Solution: A data-driven and scalable prognostic framework that integrates machine learning and cloud computing has the potential to collect large volumes of real-time streaming data and create predictive models in real-time.

Problem Statement

Manufacturers aim to minimize unexpected machine down times by predicting mechanical failures and performing proactive maintenance actions. However, existing prognostic systems are not capable of monitoring the conditions of large-scale distributed manufacturing systems as well as collecting and analyzing high-speed, large-volume heterogeneous data. The objective of this project is to create a prognostic framework for intelligent maintenance using machine learning and cloud computing.

Approach and Method

This project will integrate parallel machine learning and cloud computing. The data acquisistion system and cloud-based machine learning technique are described in Figures 1, 2, and 3.

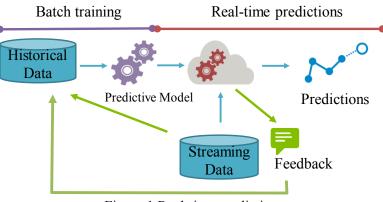


Figure 1 Real-time prediction

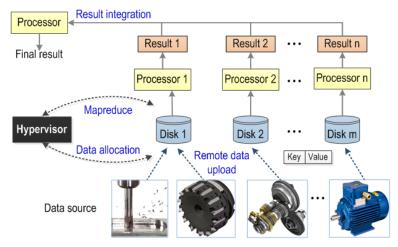


Figure 2 Cloud-based machine learning

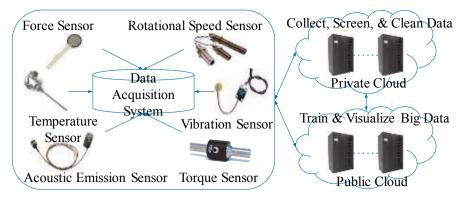


Figure 3 Data acquisition

Deliverables and Benefits

Two deliverables of the proposed project include:

- A cloud-based data acquisition system that integrates a wireless sensing system with a cloud computing infrastructure;
- A cloud-based machine learning algorithm that processes real-time streaming data and generates big data analytics.

Potential application areas

The potential application areas include:

- Manufacturing
- Automotive
- Aerospace
- Power generation
- Transportation

Project Plan and progress

The Gantt Chart of the proposed project is as follows:

Research Tasks		2016		2017		
		11 - 12	1 - 3	4 - 6	7 - 8	
Develop a cloud-based sensing system						
Collect real-time streaming data						
Develop parallel machine learning algorithms						
Test the parallel machine learning algorithms						
Demonstration and documentation						

Current State of Practice and Research

- Physics-based prognostics Predict system performance using a mathematical representation of the physical behavior of degradation processes. However, physics-based methods require deep and complete knowledge of system behaviors which is typically not readily available for many applications.
- Model-based prognostics Predict system performance based on probability distribution. The limitation of model-based prognostics is that one has to assume that the underlying process follows certain probability distribution.

How Ours is Different

- Real-time streaming data processing and big data analytics
- Scalable and high performance computing
- More accurate prediction without complete knowledge of physical behaviors