

Industrial relevance

- It has been very challenging for manufacturers to minimize unexpected machine down times by predicting remaining useful life of machinery as well as perform proactive maintenance actions.
- A data-driven and scalable prognostic framework that integrates machine learning and cloud computing has the potential to collect large volumes of real-time streaming data and create predictive models in real-time.

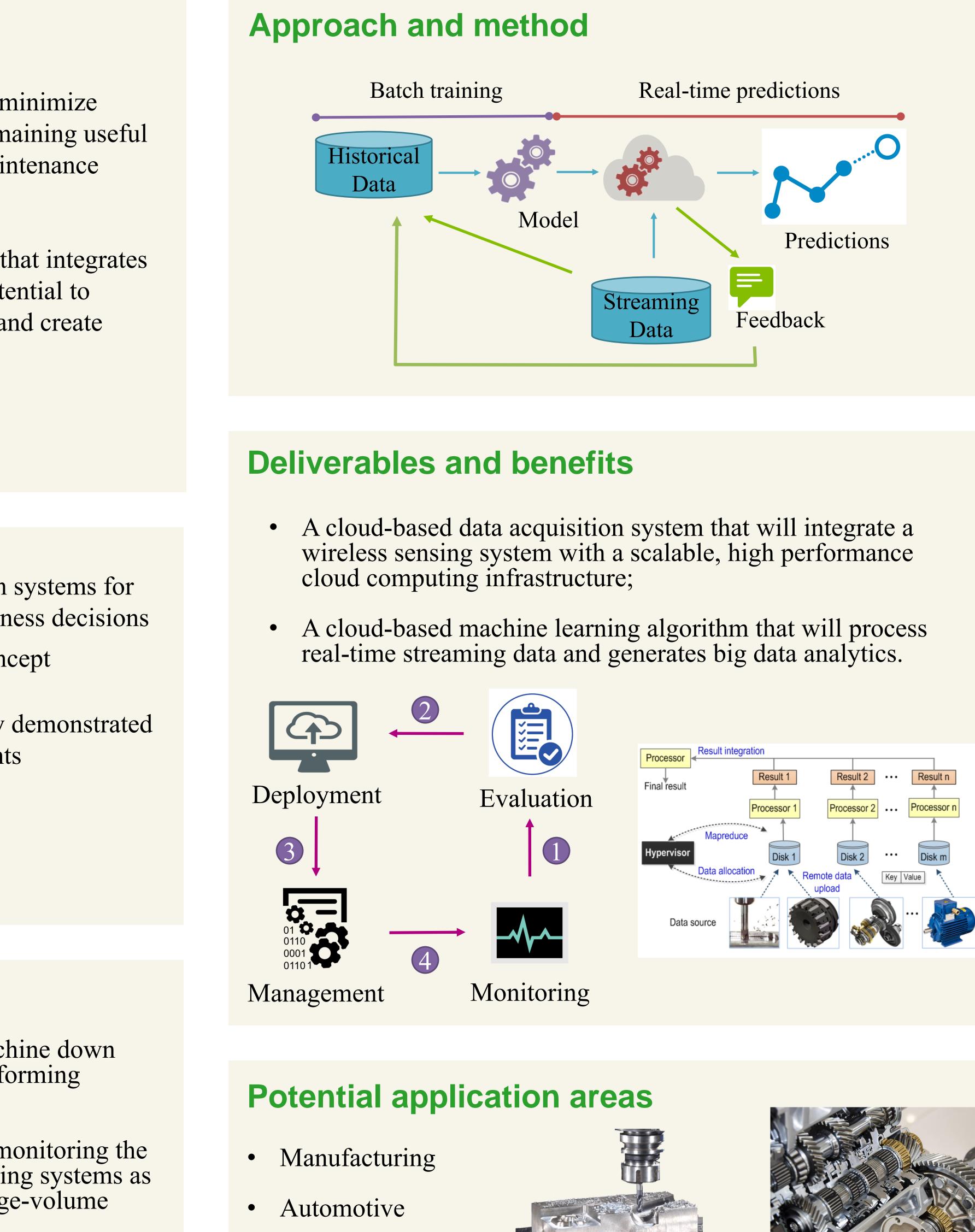
Thrust area:	Develop intelligent and data-driven
	better and faster technical and busin
Current TRL:	TRL 3 – Experimental proof of cond
Final TRL:	Estimate final TRL 6 – Technology
	in industrially relevant environment
Project type:	Proposed
Percent comp	blete: 0%

Problem statement

- Manufacturers aim to minimize unexpected machine down times by predicting mechanical failures and performing proactive maintenance actions.
- Existing prognostic systems are not capable of monitoring the • conditions of large-scale distributed manufacturing systems as well as collecting and analyzing high-speed, large-volume heterogeneous data.
- The objective of this project is to create a prognostic framework for intelligent maintenance using machine learning \bullet and cloud computing.

Cloud-based Machine Health Monitoring and Prognosis

Dazhong Wu, Connor Jennings, Janis Terpenny (Penn State University)



- Aerospace
- Power generation
- Transportation



Project plan and progress

Research Tasl

- Build a cloud-based ser using wireless sensors
- Collect real-time stream milling machines and 3
- Develop parallel mach algorithms
- Test the parallel machin algorithms
- Documentation

Current state of practice and research

- follows certain probability distribution.

How ours is different

- Real-time streaming data processing and big data analytics
- Scalable and high performance computing
- More accurate prediction without complete knowledge of physical behaviors

</>

Compute

~ 🗆

sks	2016		2017		
	8 - 10	11 - 12	1 - 3	4 - 6	7 - 8
ensing system					
and cloud					
ming data from					
3D printers					
ine learning					
ine learning					

Physics-based prognostics – Predict system performance using a mathematical representation of the physical behavior of degradation processes. However, physics-based methods require deep and complete knowledge of system behaviors which is typically not readily available for many applications.

• Model-based prognostics – Predict system performance based on probability distribution. The limitation of model-based prognostics is that one has to assume that the underlying process

