

Industrial relevance

The proposed project enables efficient information processing in large-scale Industrial IOT, which will help real-time decision making in manufacturing process.

Facts:

- Impact of manufacturing sector In 2015, \$5,940.6 billion (i.e. 18.92%) of total U.S. GDP is from the manufacturing sector.
- *Opportunities of IIOT* IIOT allows manufacturing facilities to be digitalized and monitored in real-time.
- *Computation complexity* numerous machines and proliferation of big data lead to significant challenges in analytical computing.

Urgent need: an algorithm that allows *real-time* information processing and decision making in large-scale IIOT.

Thrust area: Intelligence Current TRL: TRL - 2 Final TRL: TRL - 6 Project type: Proposed project **Percent complete:** 20%

Problem statement

Motivation

• Rapid advancement IIOT provides an unprecedented opportunity for digital manufacturing and mass customization.

Gap

- Large amount of machines and big data \rightarrow traditional serial computing algorithm \rightarrow analytical computing challenges.
- \circ Existing information processing \rightarrow lacks the ability to characterize machine signatures and quantify salient features that are sensitive to operational states of manufacturing system.

Need

- Handle big data.
- Extract pertinent information about operational dynamics.
- o Data-driven modeling and optimization.

Objective

Develop parallel and distributed algorithms to leverage real-time big data in large-scale IIOT for data-driven modeling and optimization of the network of manufacturing systems.

National Science Foundation Industry/University Cooperative Research Center for e-Design

Map Reduce for Optimizing the Large-Scale Industrial IOT towards Digital Manufacturing

Soundar Kumara, Hui Yang, Daniel Finke

Deliverables and benefits

A *software package* that contains parallel and distributed computing algorithms for data-driven modeling and optimization of large-scale IIOT of manufacturing systems.

- Forecasting machine health
- Optimizing energy consumption

Potential application areas

- **Healthcare** real-time monitoring of patients' health conditions for telemedicine.
- **Supply chain** control ambient temperature and optimize delivery efficiency.
- **Smart City** provide informationcommunication solutions to improve the quality-of-life.

Project plan and progress

- Review current literature
- machine conditions and service decision making

Month	1	2	3	4	5	6	7	8	9	10	11	12
Literature review												
Machine signature extraction												
data collection												
modeling and analysis												
Development of large-scale machine network												
Characterization of machine similarity												
network embedding algorithm												
map reduce algorithm												
Evaluation and validation												
Document and presentation												

Current state of practice and research

Traditional network embedding \rightarrow *serial computing*:

Computational complexity increases exponentially with increasing number of machines in the system.

Gap: Very little work has focused on fully utilizing the potential of the big data and addressing challenges in information processing in *IIOT* digital manufacturing

How ours is different

Our proposed approa

- multi-channel signals
- dynamic network
- parallel computing
- stochastic gradient des

References

• Multi-channel condition monitoring, signal modeling and forecasting • Develop parallel-computing algorithms for data-driven prediction of

• Real-world case studies for implementation, evaluation and validation

Classical multidimensional scaling (MDS)

Scaling by majorizing of a complicated function (SMACOF)

ch		Existing practices
	VS.	single-channel signals
	VS.	static network
	VS.	serial computing
scent	VS.	deterministic algorithms

• S. Oh, D. Lee and S. Kumara, "Effective web service composition in diverse and large-scale service networks," IEEE Transaction on Services Computing, Vol. 1, No. 1, pp. 15-32, 2008.

• S. Oh, "Effective web service composition in diverse and large-scale service networks," *Ph.D. Dissertation*, Pennsylvania State University, University Park, PA, 2006.

• C. Kan, Fabio M. Leonelli, and H. Yang, "Map Reduce for Optimizing a Large-scale Dynamic Network – the Internet of Hearts", *proceeding of International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)*, Aug. 16-20, 2016, Orlando, FL.

