

Industrial relevance

The proposed project will address defects, improve build quality, reduce costs, and increase the yield of additive manufacturing.

Facts:

- **Customization** easier to build complex, highly customized parts, add more flexibility in the design and manufacturing.
- *Constant of market* \$4 billion in 2015, \$10.8 billion in 2021.
- \swarrow High rejection rate (>2%) various types of defects induced by process variations (e.g., thermal effects and extraneous noises).
- \leftarrow Long post-build inspection (~25% of the manufacturing time) low yield (e.g., for engine parts) and high cost.

Urgent need: In-situ process monitoring and control.

Thrust area:	Intelligence			
Current TRL:	TRL-4			
Final TRL:	TRL-8			
Project type:	Proposed project			
Percent complete: 30%				

Problem statement

Motivation

Process variations (e.g. laser or galvo instabilities or drift, thermal effects, variations in powder feedstock) perturb build quality and generate residual stress \rightarrow the distortion or embedded flaws \rightarrow impact mechanical properties such as fatigue strength.

Gaps

- Depend on post-build inspection or destructive tests.
- Lack the ability to extract pertinent information about process dynamics from images.

Need

Quality control and process repeatability are critical to mass use of additive manufacturing.

Objective

Develop an in-situ image sensing, fusion and decision-support system for real-time defect mitigation in additive manufacturing.

UNIVERSITY

National Science Foundation Industry/University Cooperative Research Center for e-Design

Image-guided Additive Manufacturing

Hui Yang, IME and Ted Reutzel, CIMP-3D

Approach and method

In-situ image sensing (high-resolution DSLR camera, infrared thermography and CT scanner with >1000 Hz frame rate)

Deliverables and benefits

- An in-situ image sensing system that will record in-process images and CT scans of every single layer of the product while it is built.
- A software package with graphical user interface that will extract pertinent features about process dynamics from images for the real-time defect mitigation and optimal control.

Potential application areas

Porositv

Network GLR chart for realtime detection of defects

Characterization of network variations \rightarrow address defects

Project plan and progress

- between image features and defect evolutions.
- Evaluation and validation

	Month 1-2	Month 3-4	Month 5-6	Month 7-8	Month 9-10	Month 11-12	End
Literature review							
Data cleaning							
System development							
 Image feature extraction 							
 Data-driven models 							
 Image-guided control 							
Evaluation and validation							
Document and presentation							

Current state of practice and research

- hyperspectral images of poultry carcasses.
- wafer thickness.
- characterize morphology of nanoparticles.
- conforming tiles.

Gap: Very little work has been done to develop new image-guided additive manufacturing.

How ours is different

Our proposed approach

- Just-in-time
- In-process control
- High-dimensional images vs. Low-dimensional quality variables
- Dynamic image streams Static images VS.

References

- biomanufacturing processes", *submitted*, 2016.
- Sweden.

University at Buffalo The State University of New York

Review current literature, data cleaning and pre-processing. • Extract features from image data to characterize process. • Develop data-driven models to derive quantitative relationships

• Develop image-guided control policy of additive manufacturing.

Spectral band selection approach (Du et al. 2007) – analyze

Low-rank tensor decomposition + multivariate control chart (Yan et al. 2015) – monitoring sequential flame images.

Adaptive Gaussian process (Zhang et al. 2015) – characterize

Multistage semi-classification approach (Park et al. 2013) –

Spatiotemporal control chart (Megahed *et al.* 2012) – detect non-

Existing practices

- *vs.* Inventory
- Post-build inspection \mathcal{VS} .

• Chen Kan and Hui Yang, "Dynamic network modeling of in-situ image profiles for process control – applications in ultraprecision machining and

• Chen Kan and Hui Yang, "Network models for monitoring high-dimensional image profiles", proceeding of IEEE International Conference on Automation Science and Engineering (CASE), pp. 2078-2083, Aug. 24-28, 2015, Gothenburg,

